Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Самостоятельный гидравлический расчет трубопровода

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Условный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Вариант вычислений с помощью ПК

Выполнение исчисления с использованием компьютера является наименее трудоемким — все, что требуется от человека, это вставить в соответствующие графы нужные данные.

Поэтому гидравлический расчет делается за несколько минут, причем для этой операции не потребуется большого запаса знаний, который необходим при использовании формул.

Для его правильного выполнения необходимо взять из технических условий следующие данные:

  • плотность газа;
  • коэффициент кинетической вязкости;
  • температуру газа в своем регионе.

Необходимые техусловия получают в горгазе населенного пункта, в котором будет строиться газопровод. Собственно, с получения этого документа и начинается проектирование любого трубопровода, ведь там содержатся все основные требования к его конструкции.

Использование специальных программ является простейшим способом гидравлического расчета, исключающим поиск и изучение формул для проведения вычислений

Далее застройщику необходимо узнать расход газа для каждого прибора, который планируется подключить к газопроводу. К примеру, если топливо будет транспортироваться в частный дом, то там чаще всего используются плиты для приготовления пищи, всевозможные отопительные котлы, а в их паспортах всегда стоят нужные цифры.

Кроме того, потребуется знать количество конфорок у каждой плиты, которая будет подключена к трубе.

На следующем этапе сбора необходимых данных отбирается информация о падении давления в местах установки какого-либо оборудования — это может быть счетчик, клапан отсекатель, термозапорный клапан, фильтр, прочие элементы.

В этом случае нужные цифры найти просто — они содержатся в специальной таблице, приложенной к паспорту каждого изделия

Проектировщику следует обратить внимание на то, что должно указываться падение давления при максимальном потреблении газа

Из специальной таблицы, приложенной к паспорту изделий, можно узнать сведения о потере давления при подключении приборов к сети

На следующем этапе рекомендуется узнать, каково будет давление голубого топлива в точке врезки. Такие сведения могут содержать технические условия своего горгаза, ранее составленная схема будущего газопровода.

Если сеть будет состоять из нескольких участков, то их необходимо пронумеровать и указать фактическую длину. Кроме того, для каждого следует прописать все изменяемые показатели отдельно — это общий расход любого прибора, который будет использоваться, падение давления, другие значения.

В обязательном порядке понадобится коэффициент одновременности. Он учитывает возможность совместной работы всех потребителей газа, подключенных к сети. Например, всего отопительного оборудования, расположенного в многоквартирном или же частном доме.

Такие данные используются программой, выполняющей гидравлический расчет, для определения максимальной нагрузки на каком-либо участке или во всем газопроводе.

Для каждой отдельной квартиры или дома указанный коэффициент рассчитывать не нужно, так как его значения известны и указаны в приложенной ниже таблице:

Таблица с коэффициентами одновременности, данные из которой используются при любом виде расчетов. Достаточно выбрать графу, соответствующую конкретному бытовому прибору, и взять нужную цифру

Если на каком-то объекте планируется использовать более двух обогревательных котлов, печей, емкостных водонагревателей, то показатель одновременности всегда будет равняться 0,85. Что и нужно будет указать в соответствующей графе, используемой для расчета, программы.

Далее следует указать диаметр труб, а еще понадобятся коэффициенты их шероховатости, которые будут использоваться при строительстве трубопровода. Эти значения стандартные и их легко можно найти в Своде правил.

Свод правил по проектированию и строительству общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб the general provision and construction gas distribution syst em from steel and

РАСЧЕТ ДИАМЕТРА ГАЗОПРОВОДА И ДОПУСТИМЫХ ПОТЕРЬ ДАВЛЕНИЯ

3.21 Пропускная способность газопроводов может приниматься из условий создания при максимально допустимых потерях давления газа наиболее экономичной и надежной в эксплуатации системы, обеспечивающей устойчивость работы ГРП и газорегуляторных установок (ГРУ), а также работы горелок потребителей в допустимых диапазонах давления газа.

3.22 Расчетные внутренние диаметры газопроводов определяются исходя из условия обеспечения бесперебойного газоснабжения всех потребителей в часы максимального потребления газа.

3.23 Расчет диаметра газопровода следует выполнять, как правило, на компьютере с оптимальным распределением расчетной потери давления между участками сети.

При невозможности или нецелесообразности выполнения расчета на компьютере (отсутствие соответствующей программы, отдельные участки газопроводов и т.п.) гидравлический расчет допускается производить по приведенным ниже формулам или по номограммам (приложение Б), составленным по этим формулам.

3.24 Расчетные потери давления в газопроводах высокого и среднего давления принимаются в пределах категории давления, принятой для газопровода.

3.25 Расчетные суммарные потери давления газа в газопроводах низкого давления (от источника газоснабжения до наиболее удаленного прибора) принимаются не более 180 даПа, в том числе в распределительных газопроводах 120 даПа, в газопроводах-вводах и внутренних газопроводах – 60 даПа.

3.26 Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных, сельскохозяйственных и бытовых предприятий и организаций коммунально-бытового обслуживания принимаются в зависимости от давления газа в месте подключения с учетом технических характеристик принимаемого к установке газового оборудования, устройств автоматики безопасности и автоматики регулирования технологического режима тепловых агрегатов.

3.27 Падение давления на участке газовой сети можно определять:

– для сетей среднего и высокого давлений по формуле

– для сетей низкого давления по формуле

– для гидравлически гладкой стенки (неравенство (6) справедливо):

– при 4000 100000

3.29 Расчетный расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзитного и 0,5 путевого расходов газа на данном участке.

3.30 Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) допускается учитывать путем увеличения фактической длины газопровода на 5-10%.

3.31 Для наружных надземных и внутренних газопроводов расчетную длину газопроводов определяют по формуле (12)

3.32 В тех случаях когда газоснабжение СУГ является временным (с последующим переводом на снабжение природным газом), газопроводы проектируются из условий возможности их использования в будущем на природном газе.

При этом количество газа определяется как эквивалентное (по теплоте сгорания) расчетному расходу СУГ.

3.33 Падение давления в трубопроводах жидкой фазы СУГ определяется по формуле (13)

С учетом противокавитационного запаса средние скорости движения жидкой фазы принимаются: во всасывающих трубопроводах – не более 1,2 м/с; в напорных трубопроводах – не более 3 м/с.

3.34 Расчет диаметра газопровода паровой фазы СУГ выполняется в соответствии с указаниями по расчету газопроводов природного газа соответствующего давления.

3.35 При расчете внутренних газопроводов низкого давления для жилых домов допускается определять потери давления газа на местные сопротивления в размере, %:

– на газопроводах от вводов в здание:

– на внутриквартирной разводке:

3.37 Расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец. Неувязка потерь давления в кольце допускается до 10%.

3.38 При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

3.39 При выполнении гидравлического расчета газопроводов, проведенного по формулам (5)-(14), а также по различным методикам и программам для электронно-вычислительных машин, составленным на основе этих формул, расчетный внутренний диаметр газопровода следует предварительно определять по формуле (15)

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.

Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.

Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.

Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Влияние материала трубы на расчет

Для строительства газопроводов могут использоваться трубы, изготовленные только из определенных материалов: стали, полиэтилена. В некоторых случаях используются изделия из меди. В ближайшее время массовое использование получит металлопластиковые конструкции.

Каждая труба имеет шероховатость, что приводит к линейному сопротивлению, влияющему на процесс движения газа. К тому же у стальных изделий этот показатель значительно выше, чем у пластмасс

Сегодня необходимую информацию можно получить только по стальным и полиэтиленовым трубам. Следовательно, проектирование и гидравлический расчет могут выполняться только с учетом их характеристик, как того требует Кодекс поведения профиля. А также в документе указываются данные, необходимые для расчета.

Коэффициент шероховатости всегда соответствует следующим значениям:

  • для уже использованных стальных изделий – 0,1 см;
  • для всех полиэтиленовых труб, независимо от того, новые они или нет, – 0,007 см;
  • для новых металлоконструкций – 0,01 см.

Для любого другого типа труб этот показатель в Своде правил не указывается. Поэтому использовать их для строительства нового газопровода не стоит, так как специалистам Горгаза могут потребоваться доработки. И это, опять же, дополнительные расходы.

Гидравлический расчет сложного газопровода

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «ВОРОНЕЖСКИЙ
ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Авиационный факультет

Кафедра «НГОТ»

Специальность 130501 «Проектирование,
сооружение и эксплуатация газонефтепроводов и газонефтехранилищ»

КУРСОВАЯ РАБОТА

по дисциплине «Основы теории и
проектирования энергетических систем газонефтепроводов и газонефтехранилищ»

Тема «Гидравлический расчет сложного
газопровода»

Выполнил студент гр. НГД-091 А.С. Соколов

Руководитель А.И. Житенёв

Воронеж 2013

ЗАДАНИЕ

на курсовую работу по дисциплине «Основы теории и проектирования
энергетических систем газонефтепроводов и газонефтехранилищ»

Тема проекта «Гидравлический расчет сложного газопровода»

Студент группы НГД-091 Соколов Алексей Сергеевич

Задание №1

.        В соответствии с вариантом задания (Приложение А) составить
аналитическую зависимость для эквивалентного газопровода, представить вывод
этой зависимости с промежуточными результатами и подробными комментариями.

.        Вычислить пропускную способность сложного газопровода.

.        Рассчитать давления во всех промежуточных точках и построить
зависимости давления от продольной координаты газопровода по каждой нитке.

Задание
№2

1.      В соответствии с вариантом задания рассчитать диаметры
трубопроводной системы для обеспечения нормативных значений потерь давления.

.        Определить начальное давление, необходимое для снабжения газом
всех потребителей в соответствии с исходными данными (Приложение Б).

.        Рассчитать давление во всех промежуточных точках и построить
зависимости давления от продольной координаты газопровода по каждой нитке.

Руководитель 
А.И. Житенёв

Задание
принял студент  А.С. Соколов

Введение

. Гидравлический расчет сложного газопровода высокого
давления

.1 Определение пропускной способности сложного газопровода

.2 Оценка полученного расхода в системе

.3 Построение зависимости давления в эквивалентном
газопроводе от продольной координаты

.4 Распределение давления по участкам трубопроводной системы

. Гидравлический расчет сложного газопровода низкого давления

.1 Определение давления в узловых точках сети

.2 Определение диаметра участков распределительной сети

.3 Приведение диаметров участков сети к стандартным значениям

.4 Определение зависимости давления в сети от продольной
координаты

Заключение

Список литературы

Приложения

Расчет расхода на ограниченном участке

Если газопровод состоит из отдельных участков, то расчет суммарного расхода на каждом из них придется выполнять отдельно. Но это несложно, так как для вычислений потребуются уже известные цифры.

Определение данных с помощью программы

Зная изначальные показатели, имея доступ к таблице одновременности и к техническим паспортам плит и котлов, можно приступать к расчету.

Для этого выполняются следующие действия (пример приведен для внутридомового газопровода именно низкого давления):

  1. Количество котлов умножается на производительность каждого из них.
  2. Полученное значение умножается на уточненный с помощью специальной таблицы коэффициент одновременности для этого вида потребителей.
  3. Количество плит, предназначенных для приготовления пищи, умножается на производительность каждой из них.
  4. Полученное после предыдущей операции значение умножается на коэффициент одновременности, взятый из специальной таблицы.
  5. Полученные суммы для котлов и плит суммируются.

Подобные манипуляции проводятся для всех участков газопровода. Полученные данные вводятся в соответствующие графы программы, с помощью которой выполняются исчисления. Все остальное электроника делает сама.

Расчет с использованием формул

Этот вид гидравлического расчета схож с описанным выше, то есть потребуются те же данные, но процедура будет длительной. Так как все придется выполнять вручную, кроме того, проектировщику понадобится осуществить ряд промежуточных операций, чтобы использовать полученные значения для окончательного подсчета.

А также придется уделить достаточно много времени, чтобы разобраться во многих понятиях, вопросах, которые человек не встречает при использовании специальной программы. В справедливости вышеизложенного можно убедиться, ознакомившись с формулами, которые предстоит использовать.

Расчет с помощью формул сложный, поэтому доступный не всем. На картинке изображены формулы для расчета падения давления в сети высокого, среднего и низкого давления и коэффициент гидравлического трения

В применении формул, как и в случае с гидравлическим расчетом с использованием специальной программы, есть особенности для газопроводов низкого, среднего и, конечно же, высокого давления. И об этом стоит помнить, так как ошибка чревата, причем всегда, внушительными финансовыми издержками.

Вычисления с помощью номограмм

Какая-либо специальная номограмма представляет собой таблицу, где указаны ряд значений, изучив которые можно получить нужные показатели, не выполняя вычислений. В случае с гидравлическим расчетом — диаметр трубы и толщину ее стенок.

Номограммы для расчета являются простым способом получения нужных сведений. Достаточно обратиться к строкам, отвечающим заданным характеристикам сети

Существуют отдельные номограммы для полиэтиленовых и стальных изделий. При расчете их использовались стандартные данные, к примеру, шероховатость внутренних стенок. Поэтому за правильность информации можно не переживать.

Назначение гидравлического расчета отопления

Пример схемы отопления с учетом расчетных данных

При работе любой системы теплоснабжения неизбежно возникает гидравлическое сопротивление при движении теплоносителя. Для учета этого параметра необходим гидравлический расчет двухтрубной системы отопления. Его суть заключается в правильном выборе компонентов системы с учетом их эксплуатационных качеств.

Фактически гидравлический расчет систем водяного отопления представляет собой сложную процедуру, во время выполнения которой учитываются все тонкости и нюансы. На первом этапе следует определиться с требуемой мощностью отопления, выбрать оптимальную схему разводки трубопроводов, а также тепловой режим работы. На основе этих данных делается гидравлический расчет системы отопления в Excel или специализированной программе. Итогом вычислений должны стать следующие параметры водяного теплоснабжения:

  • Оптимальный диаметр трубопровода. Исходя из этого можно узнать их пропускную способность, тепловые потери. С учетом выбора материала изготовления будет известно сопротивление воды о внутреннюю поверхность магистрали;
  • Потери давления и напора на определенных участках системы. Пример гидравлического расчета системы отопления позволит заранее продумать механизмы для их компенсации;
  • Расход воды ;
  • Требуемую мощность насосного оборудования. Актуально для закрытых систем с принудительной циркуляцией.

На первый взгляд гидравлическое сопротивление системы отопления сложно. Однако достаточно немного вникнуть в суть вычислений и потом можно будет их сделать самостоятельно.

Для теплоснабжения небольшого дома или квартиры также рекомендуется выполнять расчет гидравлического сопротивления системы отопления.

2 Метод удельных линейных потерь давления

Последовательность гидравлического расчета методом удельных линейных потерь давления:

а) вычерчивается аксонометрическая схемасистемы отопления (М 1:100). На аксонометрической схеме выбирается главное циркуляционное кольцо. Для проведения гидравлического расчета выбираем наиболее нагруженное кольцо, которое является расчетным (главным), и второстепенное кольцо (приложение Ж).При тупиковом движении теплоносителя главное циркуляционное кольцо проходит через наиболее нагруженный и удаленный от теплового центра (узла) стояк, при попутном движении – через наиболее нагруженный средний стояк.

б) главное циркуляционное кольцо разбивается на расчетные участки, обозначаемые порядковым номером (начиная от реперного стояка); указывается расход теплоносителя на участке G , кг/ч, длина участка l, м;

в) для предварительного выбора диаметра труб определяются средние удельные потери давления на трение:

, Па/м (5.3)

где j – коэффициент, учитывающий долю потерь давления на магистралях и стояках, j=0,3 –для магистралей, j=0,7 – для стояков;

Δpр – располагаемое давление в системе отопления, Па,

Δpр=25 кПа — для теплоносителяtг=105 С.

г) по величине Rсри расходу теплоносителя на участке G(приложение Е) находятся предварительные диаметры труб d, мм, фактические удельные потери давления R, Па/м, фактическая скорость теплоносителя υ, м/с. Полученные данные заносятся в таблицу 5.2.

д) определяются потери давления на участках:

, Па (5.4)

где R – удельные потери давления на трение, Па/м;

l – длина участка, м;

Z – потери давления на местных сопротивлениях, Па,

; (5.5)

ξ – коэффициент, учитывающий местное сопротивление на участке, (приложения Б, В);

ρ – плотность теплоносителя, кг/м3, (приложение Д);

υ — скоростьтеплоносителя на участке, м/с, (приложение Е);

е) после предварительного выбора диаметров труб выполняется гидравлическая увязка, которая не должна превышать 15%.

ж) если увязка проходит, то начинают выполнять расчет второстепенных циркуляционных колец (аналогично), если же нет, то на нужных участках устанавливаются шайбы. Диаметр шайбы подбирают по формуле:

, мм, (5.6)

гдеGст – расход теплоносителя в стояке, кг/ч, (таблица 3.3);

рш – требуемые потери давления в шайбе, Па.

Диафрагмы устанавливаются у крана на основании стояка в месте присоединения к подающей магистрали.

Диафрагмы диаметром менее 5 мм не устанавливаются.

По результатам расчетов заполняются таблицы5.2, 5.3.

1. Графа 1 – проставляем номера участков;

2. Графа 2 – в соответствии с аксонометрической схемой по участкам записываем тепловые нагрузки, Q, Вт;

3. Рассчитываем расход воды в реперном стояке для расчетного участка (формула 5.1), графа 3:

4. В соответствии с таблицей 4.2 по диаметру стояка Dу, мм выбираем диаметры подводок и замыкающего участка: Dу(п), мм; Dу(з), мм.

5. Рассчитываем коэффициенты местных сопротивлений на участке 1 (приложения Б, В), сумму записываем в графу 10 таблиц 5.2, 5.3.

На границе двух участков местное сопротивление относим к участку с меньшим расходом воды.

Результаты расчетов сведены в таблицу 5.1.

Таблица 5.1 – Местные сопротивления на расчетных участках

№ участка, вид местного сопротивления



Например:Участок 3

2 тройника на проход, =1;

уч(3)= 2х1=2

Например: Стояк 3

1) чугунный радиатор – 3 шт., =1,4;

2) кран регулирующий двойной регулировки – 6 шт., =13;

3) отвод гнутый под углом 90 – 6 шт., =0,6;

4) вентиль обыкновенный прямоточный – 2 шт., =3;

5) тройник поворотный на ответвление – 2 шт., =1,5.

ст3 = 3х1,4+ + 6х13 + 6х0,6 + 2х3 + 2х1,5 = 96,2

Почему необходимо проводить расчёт газопровода

На протяжении всех участков газопроводной магистрали проводятся расчёты для выявления мест, где в трубах вероятны появления возможных сопротивлений, изменяющих скорость подачи топлива.

Если все вычисления сделать правильно, то можно подобрать наиболее подходящее оборудование и создать экономичный и эффективный проект всей конструкции газовой системы.

Это избавит от лишних, завышенных показателей при эксплуатации и расходов в строительстве, которые могли бы быть при планировании и установке системы без гидравлического расчёта газопровода.

Появляется лучшая возможность подбора нужного размера в сечении и материалов труб для более эффективной, быстрой и стабильной подачи голубого топлива в запланированные точки системы газопровода.

Обеспечивается оптимальный рабочий режим всей газовой магистрали.

Застройщики получают финансовую выгоду при экономии на закупках технического оборудования, строительных материалов.

Производится правильный расчёт газопроводной магистрали с учётом максимальных уровней расхода горючего в периоды массового потребления. Учитываются все промышленные, коммунальные, индивидуально-бытовые нужды.

Специальные программы

Ответвленные участки газопровода с разными начальными данными рассчитываются отдельно, но процедура выполняется аналогично для каждой области. Скорость потока меняется в местах сопротивления и изменения направления движения. Линейные показатели высчитываются на расчетных длинах отрезков магистрали.

Направление выбирается в зависимости от разницы напора на конце и в начале изучаемого участка. Поток идет от точки с большим давлением в сторону места с меньшим сопротивлением. Программы помогают уменьшить усилия проектировщиков тем, что начальные показатели вводятся в программу, а электроника выполняет вычисления.

Номограммы предназначаются для получения итоговых сведений путем использования таблиц, где каждая строка отвечает заданным параметрам сети.

Профессиональные

Расчеты с применением формул делают только профессиональные инженеры и технические работники. В расчетах используется большое количество данных, применяются специфические коэффициенты. Неподготовленному пользователю трудно учесть все нюансы, провести множество промежуточных расчетов для получения окончательного результата.

Профессиональный расчет подразумевает не только применение формул и числовых выражений, но и обладание специальными знаниями. Навыки не пригодятся при пользовании бесплатными расчетными программами, которые можно найти в интернете.

Бесплатные

Программы ставятся для применения на персональных гаджетах. Методики определяют диаметр, форму сечения газопровода с учетом допустимых потерь и скорости потока. Пользователю потребуется суммарное потребление газа, которое приводится в технических документах на котел, газовые плиты, колонки и другое оборудования.

Затем определяются места с возможным понижением напора. Характеризующие цифры есть в таблице паспорта, они показывают снижение напора при наибольшем потреблении. Находится величина понижения в точке врезания. Коэффициент одновременности берет в расчет совместную эксплуатацию приборов и содержится в таблицах.

Диаметр труб и коэффициент шероховатости указывается на последнем этапе. Программа предусматривает непохожие расчеты для разного давления в трубах, что нужно учитывать при включении данных.

Бесплатные онлайн программы

Старт-Проф — программа для расчета инженерных газовых коммуникаций

В этом случае пользователь подставляет требуемые сведения в графы таблицы для онлайн расчетов. Гидравлический расчет газопровода низкого давления длится несколько минут и от потребителя не требуется никаких профессиональных знаний и вычислительных навыков.

Из технических условий берутся данные:

  • плотность газовой смеси;
  • показатель кинетической вязкости;
  • климатический температурный диапазон региона проживания.
Понравилась статья? Поделиться с друзьями:
Стройкомпания Табурино
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: