Единицы измерения.
Перевод единиц измерения удельной теплоты сгорания (объемной).
Введите удельную теплоту сгорания (Qv)
Результат перевода единиц измерения удельной теплоты сгорания (Qv)
Примеры результатов работы калькулятора удельной теплоты :
/ 1000 ккал/куб.м = 4186800 Дж/куб.м //10 ккал/куб.м = 41868 Дж/куб.м //1900000 ккал/куб.м = 7954920000 Дж/куб.м //10 МДж/куб.м = 10000000 Дж/куб.м //113 Дж/куб.м = 2.69896E-8 Гкал/куб.м //5.8 кДж/куб.м = 5800 Дж/куб.м /
Поделится ссылкой на расчет:
Перевод единиц измерения удельной теплоты сгорания (массовой).
Введите удельную теплоту сгорания (Qm)
Результат перевода единиц измерения удельной теплоты сгорания (Qm)
Примеры результатов работы калькулятора удельной теплоты :
/ 0.41 Гкал/кг = 17165900 кДж/кг //25 МДж/кг = 5.97115E-15 Гкал/кг //20 кДж/кг = 20000 Дж/кг //12 кДж/кг = 12000 Дж/кг //121000 кДж/кг = 121 МДж/кг //5.8 кДж/кг = 5800 Дж/кг /
Поделится ссылкой на расчет:
Единицы измерения удельной теплоты сгорания (массовой).
- джоуль на килограмм — единица измерения в СИ. Обозначение в России:Дж/кг. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе;
- килоджоуль на килограмм — единица измерения в СИ. Обозначение в России:кДж/к. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе;
- Мегаджоуль накилограмм — единица измерения в СИ. Обозначение в России:МДж/к. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе;
- калория на килограмм — внесистемные единицы измерения. Обозначение в России: кал/кг;
- килокалория на килограмм — внесистемные единицы измерения. Обозначение в России: ккал/кг;
- Мегакалория на килограмм — внесистемные единицы измерения. Обозначение в России: Мкал/кг;
- Гикакалория на килограмм — внесистемные единицы измерения. Обозначение в России: Гкал/кг.
Единицы измерения удельной теплоты сгорания (объемной).
- джоуль на метр кубический — единица измерения в СИ. Обозначение в России:Дж/м3. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе;
- килоджоуль на метр кубический — единица измерения в СИ. Обозначение в России:кДж/м3. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе;
- Мегаджоуль на метр кубический — единица измерения в СИ. Обозначение в России:МДж/м3. Данная единица измерения широко применяется при инженерных расчетах, в современной справочной литературе;
- калория на метр кубический— внесистемные единицы измерения. Обозначение в России: калм3;
- килокалория на метр кубический— внесистемные единицы измерения. Обозначение в России: ккал/м3;
- Мегакалория на метр кубический— внесистемные единицы измерения. Обозначение в России: Мкал/м3;
- Гикакалория на метр кубический— внесистемные единицы измерения. Обозначение в России: Гкал/м3.
Перевод единиц измерения массовой удельной теплоты сгорания (в табличном виде).
Переводимые единицы | Перевод удельной теплоты сгорания (массовой) в единицы: | ||||||
Дж/кг | кДж/кг | МДж/кг | кал/кг | ккал/кг | Мкал/кг | Гкал/кг | |
Дж/кг | 1 | 10-3 | 10-6 | 0,238846 | 0,238846*10-3 | 0,238846*10-6 | 0,238846*10-9 |
кДж/кг | 103 | 1 | 10—3 | 0,238846*10-3 | 0,238846*10-6 | 0,238846*10-9 | 0,238846*10-12 |
МДж/кг | 106 | 103 | 1 | 0,238846*10-6 | 0,238846*10-9 | 0,238846*10-12 | 0,238846*10-15 |
кал/кг | 4,1868 | 4,1868*10-3 | 4,1868*10-6 | 1 | 10-3 | 10-6 | 10-9 |
ккал/кг | 4186,8 | 4,1868 | 4,1868*10-3 | 103 | 1 | 10-3 | 10-6 |
Мкал/кг | 41868*102 | 4186,8 | 4,1868 | 106 | 103 | 1 | 10-3 |
Гкал/кг | 41868*105 | 41868*102 | 4186,8 | 109 | 106 | 103 | 1 |
Переводимые единицы | Перевод удельной теплоты сгорания (объемной) в единицы: | ||||||
Дж/м3 | кДж/м3 | МДж/м3 | кал/м3 | ккал/м3 | Мкал/м3 | Гкал/м3 | |
Дж/м3 | 1 | 10-3 | 10-6 | 0,238846 | 0,238846*10-3 | 0,238846*10-6 | 0,238846*10-9 |
кДж/м3 | 103 | 1 | 10—3 | 0,238846*10-3 | 0,238846*10-6 | 0,238846*10-9 | 0,238846*10-12 |
МДж/м3 | 106 | 103 | 1 | 0,238846*10-6 | 0,238846*10-9 | 0,238846*10-12 | 0,238846*10-15 |
кал/м3 | 4,1868 | 4,1868*10-3 | 4,1868*10-6 | 1 | 10-3 | 10-6 | 10-9 |
ккал/м3 | 4186,8 | 4,1868 | 4,1868*10-3 | 103 | 1 | 10-3 | 10-6 |
Мкал/м3 | 41868*102 | 4186,8 | 4,1868 | 106 | 103 | 1 | 10-3 |
Гкал/м3 | 41868*105 | 41868*102 | 4186,8 | 109 | 106 | 103 | 1 |
udarnik_truda
Записки странствующего слесаря – Малагская правда
Сколько газа в баллоне
Кислород, аргон, гелий, сварочные смеси: 40 литров баллон при 150 атм – 6 куб.мАцетилен: 40 литров баллон при 19 атм – 4,5 куб.мУглекислота: 40 литров баллон – 24 кг – 12 куб.мПропан: 50 литров баллон – 42 литра жидкого газа – 21 кг – 10 куб.м.
Давление кислорода в баллоне в зависимости от температуры
-40С – 105 атм-20С – 120 атм0С – 135 атм+20С – 150 атм (номинал)+40С – 165 атм
Проволока сварочная Св-08 и производные от неё, вес 1 километра по длине
0,6 – 2,222 кг0,8 – 3,950 кг1,0 – 6,173 кг1,2 – 8,888 кг
Калорийность (теплотворная способность) сжиженного и природного газа
Природный газ – 8500 ккал/м3Сжиженный газ – 21800 ккал/м3
Примеры использования вышеприведенных данных
Вопрос: На сколько хватит газа и проволоки при сварке полуавтоматом с кассетой проволоки 0,8 мм весом 5 кг и баллона с углекислотой объемом 10 литров?Ответ: Сварочная проволока СВ-08 диаметром 0,8 мм весит 3,950 кг 1 километр, значит на кассете 5 кг примерно 1200 метров проволоки. Если средняя скорость подачи для такой проволоки 4 метра в минуту, то кассета уйдет за 300 минут. Углекислоты в “большом” 40-литровом баллоне 12 кубометров или 12000 литров, если пересчитать на “маленький” 10-литровый баллон, то в нём углекислоты будет 3 куб. метра или 3000 литров. Если расход газа на продувку 10 литров в минуту, то 10-литрового баллона обязано хватить 300 минут или на 1 кассету проволоки 0,8 весом 5 кг, или “большого” баллона 40 литров на 4 кассеты по 5 кг.
Вопрос: Хочу поставить на даче газовый котел и отапливаться от баллонов, на сколько будет хватать одного баллона?Ответ: В 50-литровом “большом” пропановом баллоне 21 кг сжиженного газа или 10 кубометров газа в газообразном виде. Находим данные котла, например возьмем очень распространенный котел АОГВ-11,6 мощностью 11,6 кВт и рассчитанный на отопление 110 кв. метров. На сайте ЖМЗ указан расход сразу в килограммах в час для сжиженного газа – 0,86 кг в час при работе на полную мощность. 21 кг газа в баллоне делим на 0,86 кг/час = 18 часов непрерывного горения такого котла на 1 баллоне, реально это будет происходить, если на улице -30С при стандартном доме и обычном требовании к температуре воздуха в нем, а если на улице будет всего всего -20С, то 1 баллона будет хватать на 24 часа (сутки). Можно сделать вывод, что чтоб отапливать обычный домик в 110 кв. метров баллонным газом в холодные месяцы года нужно примерно 30 баллонов в месяц. Нужно помнить, что в связи с разной теплотворной способностью сжиженного и природного газа расход сжиженного и природного газа при одной и той же мощности для котлов разный. Для перехода с одного вида газа на другой в котлах обычно нужно менять жиклеры / форсунки. Делая расчеты обязательно учитывайте это и берите данные расхода именно для котла с жиклерами под правильный газ.
Топлива. Высшая теплотворная способность — таблица. (Удельная теплота сгорания).
Приведенные в этой таблице величины соответствуют высшей теплотворной способности для сгорания при постянном давлении 1 bar и температуре 0oC.
- Высшая теплотворная способность (Higher(Upper) Calorific Value = Gross Calorific (иногда Heat) Value = GCV) – количество теплоты, выделяемой при полном сгорании топлива, охлаждении продуктов сгорания до температуры топлива и выделенной при конденсации водяного пара, образовавшегося при окислении водорода, входящего в состав топлива.
- Низшая теплотворная способность (Lower Calorific Value = Net Calorific Value = NCV) – количество теплоты, выделяемой при полном сгорании топлива без учета теплоты конденсации водяного пара, образующегося при сгорании.
Таблица ниже дает отличное представление о максимально возможном уровне той энергии, которую часто называют удельной теплотой сгорания для сухих (когда об этом имеет смысл говорить) топлив.
Энергия перешедшая при сгорании в водяной пар пойдет на парообразование и нагрев пара.
Интересной практической величиной является также «объемная » теплота сгорания. Ее можно прикинуть зная плотность. Для газов (в конце таблицы) и приведена «объемная» вышая теплотворная способность (для некоторых и та и другая).
Топлива, массовая характеристика: | Высшая теплотворная способность | ||
кДж/кг | ккал/кг | БТЕ/фунт, Btu/lb | |
Ацетон,Acetone | 29 000 | 6 900 | 12 500 |
Бензин, Gasoline, Petrol | 47 300 | 11 250 | 20 400 |
Бутан, Butane C4H10 | 49 500 | 11 800 | 20 900 |
Водород, Hydrogen | 141 800 | 33 800 | 61 000 |
Газойль, Gas oil | 38 000 | 9 050 | 16 400 |
Глицерин, Glycerin | 19 000 | 4 550 | 8 150 |
Гудрон, Битум, Tar | 36 000 | 8 600 | 15 450 |
Дизтопливо, дизельное топливо, Diesel | 44 800 | 10 700 | 19 300 |
Дерево сухое, Wood (dry) | 14 400 — 17 400 | 3 450 — 4 150 | 6 200 — 7 500 |
Керосин, Kerosene | 35,000 | 8,350 | 15 400 |
Кокс, Coke | 28 000 — 31 000 | 6 650-7 400 | 12 000 — 13 500 |
Мазут, Heavy fuel oil | 41 200 | 9 800 | 17 700 |
Метан, Methane | 55 550 | 13 250 | 23 900 |
Порох, Gun powder | 4 000 | 950 | 1 700 |
Пропан, Propane | 50 350 | 12 000 | 21 650 |
Растительные масла, Oils vegetable | 39 000 — 48,000 | 9 300 — 11 450 | 16 750 — 20 650 |
Скипидар, Turpentine | 44 000 | 10 500 | 18 900 |
Спирт, Alcohol, 96% , Ethanol | 30 000 | 7 150 | 12 900 |
Сырая нефть, Petroleum | 43 000 | 10 250 | 18 500 |
Торф, Peat | 13 800 — 20 500 | 3 300 — 4 900 | 5 500 — 8 800 |
Уголь-антрацит, Anthracite | 32 500 — 34 000 | 7 750-8 100 | 14 000 — 14 500 |
Уголь битуминозный (жирный), Bituminous coal | 17 000 — 23 250 | 4 050-5 500 | 7 300 — 10 000 |
Уголь древесный, Charcoal | 29 600 | 7 050 | 12 800 |
Уголь каменный, Coal | 15 000 — 27 000 | 3 550-6 450 | 8 000 — 14 000 |
Уголь бурый, лигнит, Lignite | 16 300 | 3 900 | 7 000 |
Уголь -полуантрацит, Semi anthracite | 26 700 — 32 500 | 6 350 — 7 750 | 11 500 — 14 000 |
Эфир, Ether | 43 000 | 10 250 | 18 500 |
Газы, объемная характеристика: | кДж/м3 | ккал/м3 | БТЕ/фут3, Btu/ft3 |
Ацетилен, Acetylene | 56 000 | 13 350 | 728 |
Бутан, Butane C4H10 | 133 000 | 31 750 | 1 700 |
Водород, Hydrogen | 13 000 | 3 100 | 170 |
Метан, Methane CH4 | 39 800 | 9 500 | 520 |
Природный газ, Natural gas | 35 000- 43 000 | 8 350-10 250 | 455 — 560 |
Пропан, Propane C3H8 | 101 000 | 24 100 | 1 310 |
Способы определения
Брутто и нетто
В 1972 г. Зволинский и Уилхойт определили «брутто» и «нетто» значения теплоты сгорания. По общему определению продукты являются наиболее стабильными соединениями, например, H2O (l), Br2(л), я2(s) и H2ТАК4(л). В сетевом определении продукты – это продукты, полученные при сжигании компаунда в открытом пламени, например H2O (г) Br2(г) я2(g) и SO2(грамм). В обоих определениях продуктами для C, F, Cl и N являются CO.2(г) HF (г) Cl2(г) и N2(g) соответственно.
Более высокая теплотворная способность
Более высокое значение нагрева (ВГЧ; полная энергия , верхнее значение нагрева , теплотворность GCV , или более высокое значение теплотворной ; ВГС ) указывает верхний предел доступной тепловой энергии , вырабатываемой с помощью полного сгорания топлива. Он измеряется как единица энергии на единицу массы или объема вещества. HHV определяется путем приведения всех продуктов сгорания к исходной температуре перед сгоранием и, в частности, конденсации любого образующегося пара. Для таких измерений часто используется стандартная температура 25 ° C (77 ° F; 298 K). Это то же самое, что и термодинамическая теплота сгорания, поскольку изменение энтальпии для реакции предполагает общую температуру соединений до и после сгорания, и в этом случае вода, полученная при сгорании, конденсируется в жидкость. Чем выше значение нагрева учитывает скрытую теплоту парообразования из воды в продуктах сгорания, и является полезным при вычислении значения нагрева для топлива , где конденсации продуктов реакции является практичной (например, в газовом топливе котла , используемый для космического тепла) . Другими словами, HHV предполагает, что весь водный компонент находится в жидком состоянии в конце сгорания (в продукте сгорания) и что тепло, выделяемое при температурах ниже 150 ° C (302 ° F), может быть использовано.
Низкая теплотворная способность
Нижняя теплотворная способность (LHV; низшая теплотворная способность ; NCV или более низкая теплотворная способность ; LCV ) – это еще одна мера доступной тепловой энергии, производимой при сгорании топлива, и измеряется как единица энергии на единицу массы или объема вещества. В отличие от HHV, LHV учитывает потери энергии, такие как энергия, используемая для испарения воды, хотя его точное определение не согласовано однозначно. Одно определение – просто вычесть теплоту испарения воды из более высокой теплотворной способности. Это рассматривает любую образовавшуюся H 2 O как пар. Таким образом, энергия, необходимая для испарения воды, не выделяется в виде тепла.
Расчеты LHV предполагают, что водный компонент процесса сгорания находится в парообразном состоянии в конце сгорания, в отличие от более высокой теплотворной способности (HHV) (также известной как высшая теплотворная способность или брутто CV ), которая предполагает, что вся вода в процессе сгорания процесс находится в жидком состоянии после процесса сгорания.
Другое определение LHV – это количество тепла, выделяемого при охлаждении продуктов до 150 ° C (302 ° F). Это означает , что скрытая теплота парообразования из воды и других продуктов реакции не восстанавливается. Это полезно при сравнении видов топлива, в которых конденсация продуктов сгорания нецелесообразна или тепло при температуре ниже 150 ° C (302 ° F) невозможно использовать.
Одно определение более низкой теплотворной способности, принятое Американским институтом нефти (API), использует стандартную температуру 60 ° F ( 15+5 ⁄ 9 ° C).
Другое определение, используемое Ассоциацией поставщиков газоперерабатывающих предприятий (GPSA) и первоначально используемое API (данные, собранные для исследовательского проекта API 44), – это энтальпия всех продуктов сгорания за вычетом энтальпии топлива при эталонной температуре (использовался исследовательский проект API 44. 25 ° C. В настоящее время GPSA использует 60 ° F) минус энтальпия стехиометрического кислорода (O 2 ) при эталонной температуре, минус теплота испарения паросодержащих продуктов сгорания.
Определение, в котором все продукты сгорания возвращаются к эталонной температуре, легче рассчитать исходя из более высокой теплотворной способности, чем при использовании других определений, и фактически даст несколько иной ответ.
Брутто теплотворная способность
Полная теплотворная способность учитывает воду в выхлопе, уходящую в виде пара, как и LHV, но полная теплотворная способность также включает жидкую воду в топливе перед сгоранием
Это значение важно для таких видов топлива, как древесина или уголь , которые обычно содержат некоторое количество воды перед сжиганием
Хозяйственные особенности различных дров
Ниже всего температура при сгорании дров из тополя
Имеет значение форма: чем мельче поленья, тем легче загораются и быстрее сгорают. Понятно, длина зависит и от конструкции: в печи или камине слишком длинные нельзя расположить, концы выпирают наружу. Слишком короткие – лишний труд при распиле или рубке. Температура горения дров зависит от размера влажности, породы дерева, количества подведенного воздуха. Ниже всего температура при сгорании дров из тополя, выше при горении твердых пород: ясеня, горного клена, дуба.
О значении влажности писалось выше. От нее и сильно зависят не только теплоотдача топлива в печи, но и трудозатраты на раскол или распиливание. Легче колется и пилится влажная, свежесрубленная древесина. Впрочем, слишком влажная вязкая, от этого колется плохо. Комлевая часть плотнее, а выкорчеванные пни, участки возле сучков обладают повышенной крепостью. Там слои дерева переплетаются, от этого намного прочнее. Дуб хорошо раскалывается в продольном направлении, что издревле используют бондари. Получение гонты, дранки, колка дров имеет свои секреты.
Еловые дрова
Ель – «стреляющая» порода, оттого нежелательная для использования в каминах или кострах. При нагреве внутренние «пузыри» со смолой вскипают и отбрасывают горящие частицы довольно далеко, что опасно: легко прожечь одежду возле костра. Или может привести к возгоранию возле камина
В закрытой топке печи это неважно. Береза даёт жаркое пламя, это отличные дрова. Но при плохой тяге у неё образуется много смолистых веществ (раньше делали берёзовый деготь), много откладывается сажи
Ольха и осина, напротив, дает мало сажи. Именно из осины, в основном, делают спички
Но при плохой тяге у неё образуется много смолистых веществ (раньше делали берёзовый деготь), много откладывается сажи. Ольха и осина, напротив, дает мало сажи. Именно из осины, в основном, делают спички.
На практике удобно свежесрубленные дрова сразу распилить и расколоть. Потом сложить под навесами, делая поленницы так, чтобы воздух проходил, просушивая топливо и увеличивая теплоотдачу
Колка дров – трудоемкое занятие, поэтому покупая, обращайте на это внимание. А еще на то, сложенные или насыпью дрова вам привезут. Во втором случае печное топливо размещается в кузове «рыхлее», и клиент платит частично за воздух
К тому же используемое для обогрева жидкое или газообразное топливо имеет плюс: легко автоматизировать подачу. Дрова требуют много ручной работы. Это всё стоит учитывать при выборе печи или котла для жилища
Во втором случае печное топливо размещается в кузове «рыхлее», и клиент платит частично за воздух. К тому же используемое для обогрева жидкое или газообразное топливо имеет плюс: легко автоматизировать подачу. Дрова требуют много ручной работы. Это всё стоит учитывать при выборе печи или котла для жилища.
Где и как хранить топливо
Не всегда потребители учитывают необходимость строительства топливохранилища при выборе теплогенератора, а продавцы оборудования им об этом тактично не напоминают. «Солярку» в канистрах не навозишься, к тому же покупать оптом значительно дешевле. Оптом – это значит бензовозом. Самый маленький – на шасси «Газели», вместимость его цистерны – 1,3 м3. Следующий – шасси ГАЗ 3309, он привезёт 4,9 м3. Далее имеются 6,2, 6,5, 6,8 м3 и так далее, максимум 15,8 м3. В стоимости топлива немалую долю «тянут» транспортные расходы, поэтому возить по полцистерны невыгодно. Исходя из этого и сезонной доступности проезда тяжёлого автотранспорта вместимость топливохранилища рекомендуется принимать в пределах 0,25-1 годовой потребности и не меньше доступной в регионе автоцистерны.
Строительные и противопожарные нормы разрешают хранить в котельной запас топлива всего лишь в 50 л, поэтому вместительное топливохранилище должно быть устроено за пределами дома либо в изолированной от здания противопожарной стеной пристройке с отдельным входом. Закапывать, как часто делали раньше, металлический резервуар (к примеру, списанную цистерну) в землю, не рекомендуем. Грунт промерзает, ёмкость и трубопроводы нужно теплоизолировать, сталь со временем корродирует, осуществлять контроль за герметичностью ёмкости невозможно. А новый, долговечный металлический резервуар весьма дорог.
Существуют полимерные топливные резервуары для размещения в грунте, они не подвержены коррозии, но не столь прочны, как стальные
Для небольшого объекта, каковым является частный жилой дом, рациональнее соорудить отдельное хозяйственное строение или пристройку к дому, где можно будет поддерживать положительную температуру. Ёмкости – стандартные полимерные баки, чаще используют на 1000 л. Они компактны, занимают немного места, имеют все необходимые технологические отверстия для объединения в систему, относительно несложно загружаются и очищаются.
Топливохранилище частного дома на 3 м3 в отапливаемом помещении – удобно и безопасно.
Зольность
Зольностью называют содержание в топливе минеральных веществ, остающихся после полного сгорания всей горючей массы. Зола является нежелательной частью топлива, так как снижает содержание горючих элементов и затрудняет эксплуатацию топочных устройств.
Зола подразделяется на внутреннюю, содержащуюся в древесном веществе, и внешнюю, попавшую в топливо при заготовке, хранении и транспортировании биомассы. В зависимости от вида зола имеет различную плавкость при нагревании до высокой температуры. Легкоплавкой называется зола, имеющая температуру начала жидкоплавкого состояния ниже 1350°С. Среднеплавкая зола имеет температуру начала жидкоплавкого состояния в пределах 1350—1450 °С. У тугоплавкой золы эта температура выше 1450 °С.
Внутренняя зола древесной биомассы является тугоплавкой, а внешняя — легкоплавкой.
Содержание внутренней золы стволовой древесины изменяется в пределах от 0,2 до 1,17%.
Зольность коры различных пород варьирует от 0,5 до 8% и выше при сильном загрязнении при заготовке или складировании.
Коээфициент утилизации тепла
Коэффициент утилизации тепла – отношение количества теплоты, воспринятой котлом-утилизатором, к теплу топлива, сожженного в печи.
Коэффициент утилизации тепла современных газовых котлов с закрытой камерой сгорания, с регулируемой процессором подачей газа и воздуха превышает 99%.
Коэффициент утилизации тепла всех атмосферных котлов не превышает 90% в связи с тем, что в процессе сгорания в атмосферных котлах не используется часть теплого воздуха, который забирается из помещения, нагревается в топке выделяемой топливом энергией до температуры, превышающей 100° и выбрасывается в дымовую трубу.
Коэффициент утилизации тепла твердотопливных котлов не превышает 80% в связи с высокой температурой в реакторе (топке) и сложностью её регулировки.
Таким образом, коэффициент использования теплоты сгорания газообразного топлива в современных котлах с закрытой камерой сгорания достигает 98%, причем рассчитывается по высшей теплоте сгорания (если используется котел конденсационного типа). Жидкое топливо используется не более чем на 77%, а твердое всего лишь на 68%.
Жидкое топливо
Жидкое топливо – это продукты переработки сырой нефти. В водогрейных котлах небольшой мощности сжигают обычно дизельное топливо, солярку или легкие сорта мазута. В крупных водогрейных котлах, устанавливаемых на районных станциях теплоснабжения, допускается применение более тяжелых сортов топочного мазута (марки М40 и М100). На нефтепромыслах в качестве топлива для котлов иногда используют отбензиненную сырую нефть.
Качество жидкого топлива определяется составом исходной сырой нефти, а также технологией ее переработки на нефтеперерабатывающем заводе. Основная характеристика жидкого топлива, определяющая условия его транспорта и сжигания – вязкость. Характеристики вязкости различных видов жидкого топлива представлены на диаграмме (рис.1).
Рис. 1. Характеристики вязкости различных видов жидкого топлива.
Горение жидкого топлива
На процесс сжигания жидкого топлива влияют и другие характеристики: зольность, содержание влаги и, особенно, содержание серы
Важное значение имеют также температура вспышки и температура застывания. Теплота сгорания различных марок жидкого топлива составляет, как правило, 39,8-41,9 МДж/кг (9500-10000 ккал/кг)
С точки зрения обеспечения надежной работы топливной аппаратуры и котельной установки в целом, самое подходящее жидкое топливо, безусловно, – дизельное, теплота сгорания которого – 10 180 ккал/кг. В большинстве его видов практически нет механических примесей, а содержание серы даже в тяжелых марках дизельного топлива не превышает 0,5 %. Благодаря этому не возникает проблем с коррозией поверхностей нагрева котлов и загрязнением атмосферы сернистым ангидридом. Очень важные достоинства дизельного топлива – низкая температура застывания и хорошее распыливание в топках водогрейных котлов.
В некоторых европейских странах все виды котельного топлива делят на дистилляционные (в российской практике – печное топливо) и остаточные (мазут). Печное топливо получают при термическом и каталитическом крекинге нефтепродуктов. Оно применяется главным образом для отопления зданий, а также на железнодорожном транспорте и в промышленности. В Великобритании печное топливо называют «бытовым», во Франции – «легким», в США – «форсуночным». Деление печного топлива на сорта производится в зависимости от его вязкости, которая во многом определяет назначение топлива и наиболее подходящий тип форсунки.
Вполне пригодны для использования в небольших отопительных котлах и легкие сорта мазута, в первую очередь – флотские: Ф5 и Ф12. К важным достоинствам этих марок жидкого топлива можно отнести невысокую вязкость: у Ф5, например, при температуре 50 °С она не превышает 5 градусов условной вязкости (°ВУ}. Кроме того, флотские мазуты отличаются низкими температурой застывания (-5°С), зольностью (не более 0.1 % по массе) и высокой теплотой сгорания (QRI = 41,3 МДж/кг).
Топочные мазуты, в отличие от флотских, являются тяжелыми крекинг-остатками или их смесями с мазутами прямой перегонки. Помимо высокой вязкости и плюсовой температуры застывания, в топочных мазутах допускается более высокое содержание механических примесей, серы и воды. Все это создает существенные трудности при хранении и сжигании топочных мазутов в водогрейных котлах малой мощности.
В табл. 4 приведены основные характеристики жидких топлив, на которые рассчитаны горелки и котлы поставщиков оборудования из Европы.
Таблица 4. Характеристики различных видов топлива.
Характеристика | Виды жидкого топлива | |||||
---|---|---|---|---|---|---|
Бензин | Керосин | EL | S (серы – до 2,5%) | SA (серы – до 1%) | Мазут | |
Теплота сгорания высшая, МДж/кг | 47,33 | 46,27 | 45,76 | 42,76 | 43,38 | 39,46 |
Теплота сгорания низшая, МДж/кг | 44,20 | 43,20 | 42,82 | 40,38 | 40,94 | 37,90 |
Плотность при 15°С, г/мл | 0,73 | 0,81 | 0,84 | 0,99 | 0,96 | 1,04 |
Температура воспламенения, °С | >21 | >40 | 70 | 120 | 120 | 90 |
Вязкость, мм2/c: при 20°С при 50°С при 100°С | 0,7 – – | 1,8 – – | 5,0 2,6 – | – 300 30 | – 200 25 | 5,0 2,0 – |
Состав (в % по массе): углерод (C) водород (H) сера (S) | 85,6 14,35 0,05 | 86,06 13,84 0,10 | 86,44 13,37 0,19 | 86,63 10,87 2,50 | 87,61 11,19 1,00 | 93,0 6,8 0,2 |
Объемы воздуха и продуктов сгорания при α = 1,0 м3/кг: теоретическое количество воздуха сухие дымовые газы влажные дымовые газы | 11,42 10,86 12,12 | 11,30 10,53 11,97 | 11,22 10,46 11,86 | 10,65 10,04 11,17 | 10,79 10,16 11,33 | 9,88 9,52 10,27 |
Правила транспортировки
Транспортировка большей части нефтепродуктов допускается всеми видами транспорта: автомобильным, железнодорожным, авиационным. Особые требования выдвигают к тарам – емкостям под нефтяные продукты. Они обычно изготовлены из алюминия с защитным внутренним слоем или стали. Емкости плотно закрывают крышкой с прокладкой, создаются все условия для полной герметичности. Тара должна быть обозначена соответствующей маркировкой – номер UN вещества, класс опасности. Бочки с горючим размещают вертикально и жестко фиксируют. Без оформления разрешения Минтранса и согласования маршрута допускается транспортировка 1000 литров бензина.
Цистерны автопоездов в обязательном порядке обозначают специальной маркировкой. Бензовоз должен быть оборудован заземляющим устройством. При необходимости транспортировки свыше 1000 литров горючего водитель обязан иметь при себе:
- маршрутный лист с указанным местом отправления и конечным пунктом;
- соглашение о перевозке опасных грузов;
- допуск к транспортировке грузов.
Доставкой взрывоопасных веществ, включая углеводородные смеси, могут заниматься обученные водители. У них должна быть медицинская справка. Документ подтверждает пройденный этап медицинского контроля. Компания-перевозчик обязательно должна располагать разрешением на перевозку опасных грузов внутри страны.
Важно обращать внимание на то, какая должна быть рабочая температура двигателя. Как перегрев, так и понижение показателей могут существенно навредить системе, поэтому важно вовремя обращать на это внимание и принимать меры по восстановлению, пока поломка не превратилась в серьезную проблему, исправление которой обойдется в круглую сумму
Что такое горение
В процессе горения температура резко повышается и выделяется большое количество тепловой энергии (теплоты). Поэтому, горение – это экзотермический процесс.
В топливе содержатся атомы химического элемента, который называется углеродом. При горении топлива каждый атом углерода объединяется в двумя атомами кислорода и выделяется энергия.
Когда горит какое-либо вещество, мы видим пламя (рис. 2).
Рис. 2. Горение – это химическая реакция окисления топлива с образованием продуктов горения, пламенем выделением теплоты
Горение – процесс сложный, потому, что во время его протекания происходит цепочка химических превращений. В основном – это реакции окисления между сгорающим топливом и кислородом;
Примечание: В окружающем воздухе содержится кислород. Кислород – это сильный окислитель.
Что нужно, чтобы горение возникло
Только лишь наличия топлива и кислорода в окружающем воздухе недостаточно, чтобы это топливо загорелось. Мы должны сначала нагреть топливо до температуры, при которой произойдет его возгорание. Для предварительного нагрева мы используем источник зажигания. Например, спички, зажигалку и т. п.
Примечание: Чтобы горение возникло, нужно сначала нагреть топливо до температуры, при которой произойдет возгорание.
Например, самостоятельно может загореться бумага, наргетая до 233 градусов Цельсия или дерево, нагретое до 300 градусов Цельсия.
Поэтому, бездумно нагревать горючие вещества опасно. Так как нагретое горючее вещество способно самостоятельно загореться, иногда со взрывом.
Температура горения некоторых веществ
- сухие дрова: от 800 до 1000 (C);
- пламя спички: от 750 до 1400 (C);
- уголь в печи или котле: от 1000 до 2300 градусов Цельсия (зависит от подачи воздуха);
- бензин: 1300 — 1400 (C);
Температура частей пламени различается
Раскаленные до высокой температуры газы, выделяющиеся при сгорании топлива, светятся. Они образуют светлый ореол около горящего топлива. Этот ореол называют пламенем. Пламя можно условно разделить на слои. Температура таких слоев пламени различается. Чем ярче пламя, чем ближе его цвет к белому цвету, тем выше его температура.
Рис. 3. Раскаленные газы, выделяющиеся при горении, светятся и, образуют пламя, которое по степени нагревания можно разделить на слои
От чего зависит теплотворность дров
Первое, что рассматривается при выборе дров – это порода. Деревья здесь рассматриваются в качестве топлива, а точнее химических особенностей того или иного образца. Для наглядности в таблице представлены общие (усредненные) показатели:
Тип дров | Теплотворная способность дров (в Ккал/кг*) |
Лиственные | 4460 |
Хвойные | 4560 |
Смешанные | 4510 |
* Речь здесь идет не про объем, а про массу дров. Стоит отметить, в кубометре лиственных пород оказывается больше, чем хвойных. То есть табличные данные относительно объема могут быть ниже или выше.
Под удельной теплотой сгорания топлива подразумевается количество тепловой энергии, которое выделяется в результате полного сгорания заданной массы или объема в данном случае дров. Измеряется физическая величина в Джоулях либо Калориях: Дж/кг или Ккал/кг. Здесь имеется прямая зависимость с важным для пользователей дровяных печей и каминов моментами. Чем выше показатели, тем меньше нужно топлива из-за высокого КПД.
Отдельно рассматриваются еще 2 понятия:
- Объемная теплотворность. Показатели здесь зависят от плотности древесины, поэтому их нельзя считать стабильными. Одно и то же растение в разных местах имеет отличительную химическую среду питания.
- Массовая теплотворность. Показатели зависят от влажности образца. Здесь условно проводится классификация на три группы: комнатно-сухая (7-20 %), воздушно-сухая (20-50 %) и сплавная древесина (50-70 %).
В таблице ниже представлены показатели объемной теплотворности дров (в Ккал/куб.дм) различных пород деревьев с учетом их влажности:
Порода | 15 % | 25 % | 50 % |
Береза | 2600 | 2028 | 891 |
Дуб | 3240 | 2527 | 1110 |
Ель | 1800 | 1404 | 617 |
Кедр | 2280 | 1778 | 781 |
Лиственница | 2640 | 2059 | 904 |
Осина | 1880 | 1466 | 644 |
Пихта | 1640 | 1279 | 562 |
Сосна | 2080 | 1622 | 712 |
Тополь | 1600 | 1248 | 548 |
Массовая теплотворность чаще учитывается при определении общего показателя. Вот несколько примеров в цифровом выражении:
Степень влажности (в %) | Теплотворная способность (в Ккал/кг) |
7 | 4020 |
12 | 3770 |
20 | 3370 |
31 | 2820 |
45 | 2120 |
63 | 1220 |
Второе, что рассматривается при выборе дровяного топлива – уровень ее влажности. Стоит отметить, что это понятие может быть двух типов:
- Абсолютная. Здесь рассматривается текущий показатель количества влаги на фоне совершенно сухого образца. Это особенно актуально для строительных материалов.
- Относительная. В этом случае учитывается количество влаги в заготовках на конкретный момент сравнительно с массой выбранной древесины. Это актуально при работе с топливными ресурсами.
Влажность учитывать при расчетах необходимо, так как часть тепловой энергии в процессе горения дров уходит на процесс испарения влаги. Она фактически в итоге не «принимает участия» в обогреве печного щита, в конечном счете и жилого помещения. Для вычислений реальной теплотворности древесины существует формула: Qр=Q(100-W)/100-6W. Под условными обозначениями подразумеваются:
- Q – теплотворность абсолютно сухого образца;
- W – относительная влажность заготовленного топлива.
Например, для лиственных пород Q=4460 Ккал/кг. При W=12 % теплотворность березовых дров будет снижена до 3852 Ккал/кг. А у ели при той же относительной влажности значение уменьшится на 620 единиц.
Третий параметр, от которого зависят показатели КПД дров – это плотность древесины. Касательно топлива рассматривается вес одного кубометра. В таблице представлены усредненные показатели объемной теплотворности для разных пород древесины при влажности в 12 %.
Порода | Плотность (в кг/куб.м) | Теплотворность (в ККал/куб.дм) |
Береза | 640 | 2465 |
Дуб | 690 | 2658 |
Ель | 445 | 1753 |
Кедр | 435 | 1714 |
Лиственница | 665 | 2620 |
Осина | 495 | 1907 |
Пихта | 375 | 1478 |
Сосна | 505 | 1990 |
Тополь | 455 | 1753 |
Наравне с теплоотдачей дров разных пород рассматривается так называемая жаропроизводительность. Это температура сгорания топлива. В теории показатель должен быть близок +1547 градусам по Цельсию. Однако на практике наблюдаются различные потери от воздействия воздуха, окружающих предметов, сквозных отверстий и прочего. То есть по факту температурный диапазон оказывается ограниченным +700-+1200 градусами.