Что также важно знать?
Ответственность за температуру воды, которая нагревается в теплотрассе, несёт местная ТЭЦ или же котельная. Транспортировка тепловых носителей и минимальные потери возложены на организацию, обслуживающую тепловую сеть. Обслуживает и настраивает элеваторный узел ЖЭУ или управляющая компания.
Важно знать, что диаметр самого сопла элеватора обязательно должен быть согласован с коммунальной тепловой сетью. Все вопросы, касающиеся низкой температуры в помещении, нужно решать с управляющим органом многоквартирного дома или иного недвижимого объекта, о котором идёт речь
Обязанность данных органов – обеспечить граждан минимальными санитарными нормами температур.
https://www.youtube.com/watch?v=m-xzlcXCSPAVideo can’t be loaded because JavaScript is disabled: Температура теплоносителя не соответствует норме. (https://www.youtube.com/watch?v=m-xzlcXCSPA)
Когда целесообразно устанавливать АУУ — примеры и расчет срока окупаемости
Давайте рассмотрим 3 примера установки узла учета и рассчитаем срок окупаемости данного мероприятия.
Все примеры из реальной жизни и базируются на энергетических обследованиях, которые мы провели.
И так, у нас три административных здания (офисы):
- Здание 1 площадью 1300 м2
- Здание 2 площадью 4800 м2
- Здание 3 площадью 18500 м2
Все три здания находятся в Москве.
Вот основные итоги установки узла управления системы отопления:
Площадь м2 | Общий расход тепла за отопительный период до установки АУУ | Общий расход тепла за отопительный период после установки АУУ | Сокращение потребления тепла Гкал | Стоимость Гкал тыс. руб. (2018 г.) | Экономия за отопительный период тыс. руб. | |
Здание №1 | 1 300 | 340 | 266 | 74 | 2,0 | 148 |
Здание №2 | 4 800 | 550 | 418 | 132 | 2,0 | 264 |
Здание №3 | 18 500 | 4 400 | 3 720 | 680 | 2,0 | 1 360 |
Как видно из таблицы, установка узла управления отоплением помогла сократить потребление тепла за отопительный период на:
- Здание №1 – 74 Гкал,
- Здание №2 – 132 Гкал,
- Здание №3 – 680 Гкал.
Столь существенная разница в сокращении потребления обусловлена, в основном:
- размером зданий (площадь и этажность)
- количеством часов эксплуатации,
- назначением.
В следующей таблице указаны:
- экономия тепла за отопительный период (из расчета стоимость 2 тыс. руб. за Гкал)
- стоимость установки и монтажа узла управления отоплением и
- срок окупаемости.
Экономия за отопительный период тыс. руб. | Стоимость АУУ (оборудование и монтаж) | Простой срок окупаемости лет | |
Здание №1 | 148 | 1 556 | 10,5 |
Здание №2 | 264 | 1 856 | 7,0 |
Здание №3 | 1 360 | 2 000 | 1,5 |
Основной вывод, который мы можем сделать из расчета срока окупаемости АУУ
Автоматизированный узел управления отоплением целесообразно устанавливать в зданиях со значительным потреблением тепловой энергии и в зданиях с перетопами.
В небольших зданиях и зданиях с малым потреблением тепловой энергии автоматизированный узел управления отоплением будет окупаться очень долго или не окупиться никогда.
В небольших зданиях более целесообразно произвести ревизию элеваторных узлов или их установку, а также установить систему балансировочных клапанов на главных стояках системы отопления.
Узел управления системы отопления
Что такое энергосервис
Энергосервис — это комплекс мер по проведению энергосберегающих мероприятий в зданиях или на объектах. Цель этих работ — снижение затрат заказчика на энергоресурсы при сохранении условий, когда в здании комфортно находиться. Для России это направление достаточно новое как для потребителей, так и для поставщиков услуг.
Энергосервисом в столице занимаются частные компании. Государственное казенное учреждение «Энергетика», находящееся в ведении городского Департамента жилищно-коммунального хозяйства, обеспечивает развитие и контроль в этой сфере, способствует внедрению энергосберегающих технологий в Москве. Учреждение помогает наладить сотрудничество частных энергосервисных фирм с префектурами, управляющими компаниями и непосредственно горожанами. Для этого создана горячая линия, специалисты которой готовы ответить на все вопросы по энергосбережению. Получить консультацию можно в рабочие дни с 09:00 до 18:00 по телефону.
Недавно ГКУ «Энергетика» получило статус регионального центра энергосбережения города Москвы. Это дает учреждению возможность формировать нормативную базу, готовить изменения в столичное законодательство об энергосбережении, способствовать повышению энергоэффективности, создавать типовые формы энергосервисных договоров, контролировать исполнение этих договоров, консультировать горожан.
Сейчас сотрудничество идет, как правило, через префектуры. Районные власти при поддержке и совместно с ГКУ «Энергетика» и управляющими организациями проводят встречи москвичей с представителями энергосервисных компаний. Но возможен и обратный процесс. Инициативные жильцы сами обращаются в ГКУ «Энергетика» с просьбой найти для них инвестора и заключить энергосервисный договор.
Функции системы
Система обеспечивает автоматизированный коммерческий и технический учет:
- теплоносителя (подпиточной и сетевой воды, пара и конденсата), тепловой энергии, произведенной и отпущенной потребителям источниками теплоснабжения по каждой тепломагистрали (по каждому потребителю) и по источнику теплоты в целом
- теплоносителя и тепловой энергии, полученной от источников теплоснабжения и потребленной предприятиями-потребителями по основным направлениям ее использования и по предприятию в целом.
При этом выполняются следующие функции:
- измерение мгновенных и расчет усредненных за интервалы времени значений температуры, давления и расхода (массы или объема) теплоносителя
- определение по результатам измерений температуры и давления теплофизических параметров теплоносителя: плотности, динамической вязкости, энтальпии и других параметров
- расчет количественных параметров теплоносителя и тепловой энергии: массового (объемного) расхода, тепловой мощности, массы (объема) и тепловой энергии теплоносителя за отчетные интервалы времени
- расчет балансов выработки и потребления теплоносителя и тепловой энергии, определение нормативных и фактических теплопотерь по каждой тепломагистрали
- автоматическое формирование ведомостей учета теплоносителя и тепловой энергии за отчетные интервалы времени по каждому направлению их использования
- управление отпуском/потреблением теплоносителя и теплофикационной арматурой (опционально).
Назначение температурного графика
Система центрального отопления и значение графика работы тепловых сетей определяются температурным графиком. Он показывает зависимость показателей величин теплоносителя в системе отопления (например, воды) от наружной температуры воздуха.
Специалисты вычисляют величины нагретости подающей и обратной воды-теплоносителя с помощью абонентского ввода на основе информации о температуре окружающей среды. Собственники каждого многоквартирного дома наравне с владельцами частных домов всегда подходят с ответственностью к составлению плана расчета температурного графика. Грамотные подсчеты помогают достигнуть значительного снижения расходов на отопление помещения.
Советуем ознакомиться:
- Норматив и допустимое отклонение температуры горячей воды
- Какая должна быть температура в квартире зимой
- Жалоба на отсутствие отопления в квартире: образец
- Куда обращаться, если батареи в квартире чуть теплые?
Достичь оптимальных цифр на счетах не так уж сложно — главное составить температурный график, в значениях которого будет отражена зависимость степени нагревания теплоносителей от погодных условий на улице. Для каждого населенного пункта составляется индивидуальная отопительная диаграмма. Ее значение состоит в определении наиболее оптимальной для данного конкретного случая работы системы отопления. Любой хозяин может добиться предпочтительного распределения горячей воды-теплоносителя. Для этого нужно руководствоваться основным принципом составления температурного графика, суть которого в том, что чем холоднее на улице, тем выше уровень потери тепла.
Преимущества индивидуального температурного графика:
- Нормализация тепловых потерь во время подачи горячей воды в здания со среднесуточной температурой наружного воздуха;
- Предотвращение недостаточного уровня нагрева помещений;
- Тепловые станции обязуются поставлять потребителям услуги, которые соответствуют установленным технологическим условиям.
Все показатели утверждаются соответствующими нормативными документами. За основу берется информация о пяти самых холодных днях в году. Также рассматриваются данные последних пятидесяти лет, из которых выбираются восемь зим с наиболее низкими температурами. Система отопления подобного рода позволяет заранее подготовиться к морозам. Согласно статистике, их можно ждать как минимум раз в несколько лет. Именно по этим причинам температурный график позволяет значительно сэкономить средства во время разработки отопительной системы.
График подачи горячей воды в квартиру
Для того, чтобы доставить потребителю оптимальное ГВС, ТЭЦ должны отправлять ее максимально горячей. Теплотрассы всегда настолько длинные, что их протяженность можно измерять в километрах, а протяженность по квартирам измеряется и вовсе в тысячах квадратных метров. Какой бы ни была теплоизоляция труб, тепло теряется по пути к пользователю. Поэтому необходимо нагреть воду максимально.
Выглядит это так:
Температура кипения | Давление |
100 | 1 |
110 | 1,5 |
119 | 2 |
127 | 2,5 |
132 | 3 |
142 | 4 |
151 | 5 |
158 | 6 |
164 | 7 |
169 | 8 |
Подача горячей воды в зимнее время года должна быть непрерывной. Исключения из этого правила составляют аварии на теплоснабжения. Отключить горячее водоснабжение могут только в летний период для профилактических работ. Такие работы проводятся как в системах теплоснабжения закрытого типа, так и в системах открытого типа.
2021 год¶
Верховный Суд РФ настаивал на позиции о невозможности «прямых» договоров на ГВС в домах с ИТП.
Минстрой России придерживается противоположного подхода.
ГАРАНТ.РУ:
Внесены поправки в Жилищный кодекс: «при отсутствии централизованного ГВС и производстве и предоставлении коммунальной услуги по ГВС с использованием ВДИС, включающих оборудование, входящее в состав общего имущества, в случаях предусмотренных, ч. 1 и ч. 9 ст. 157.2 Жилищного кодекса, собственники и пользователи помещений в таком МКД заключают с РСО договоры, содержащие положения о предоставлении ХВС на цели ГВС и электро-, газо-, теплоснабжения на цели ГВС.» Принят в первом чтении.
ГАРАНТ.РУ:
Как рассчитывается?
Выбирается метод регулирования, затем делается расчёт
Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды
Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».
Исходными данными на теплогенерирующую станцию будут:
- Тнв – величина наружного воздуха.
- Твн – воздух в помещении.
- Т1 – теплоноситель от источника.
- Т2 – обратное поступление воды.
- Т3 – вход в здание.
Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.
При этом, на выходе они будут иметь 70°C.
Полученные результаты сносятся в единую таблицу, для последующего построения кривой:
Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.
Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.
Экономия тепла, отопления, теплоснабжения.
За счёт чего достигается экономия?
- Потребитель сам решает, когда и сколько тепла потреблять.
- Равномерное распределение тепла по дому.
- Предотвращение перетопов и перегрева в жилых домах, предприятиях.
- Отсутствие закипания теплообменников пластинчатых или кожухотрубных.
- Ограничение поступления лишнего теплоносителя в дом.
- Увеличение срока службы трубопроводов, системы отопления.
- Контроль ИТП online, с оповещением об аварийных ситуациях.
- Вы не платите за чужое, не использованное отопление в оттепели.
Комфорт проживания.
- Нет нужды использовать электрообогреватели.
- Сквозняки из-за широко открытых окон и дверей балконов в прошлом.
- Духота в квартире не досаждает.
- Холодные батареи уже не у вас.
Система автоматического управления отоплением, теплоснабжением здания.
Объект работает без постоянного обслуживающего персонала, а информация выводится на диспетчерский пульт управления либо на сотовый телефон.
Функция удалённого управления позволяет на расстоянии менять настройки системы корректировать её работу в ручном режиме. Видеть параметры системы в режиме онлайн.
Центральные тепловые пункты круглогодично обеспечивают жителей теплом в отопительный сезон. Основная Задача АСУ ИТП – это круглосуточный контроль и управление подачей теплоносителя с постоянным давлением, поддержание заданной температуры в помещении. Для эффективности обслуживания информация от исполнительных механизмов и датчиков собирается и передается на единый диспетчерский пульт по средствам проводной (кабельный интернет) и беспроводной (сотовой) связи. Это позволяет отслеживать работу оборудования АСУ теплового пункта в режиме реального времени и при необходимости выполнять корректировку рабочих параметров оборудования.
Регуляторы тепла, отопления, теплоснабжения.
Регуляторы предназначены для автоматического изменения расхода теплоносителя в системе отопления на центральных и индивидуальных тепловых пунктах, а также для автоматического регулирования температуры в системах приточной вентиляции путем воздействия на клапан с электрическим приводом. Приборами предусмотрено регулирование разности температур воды в подающем и обратном трубопроводах систем отопления либо температуры воды в подающем трубопроводе по графику отопительных систем в зависимости от температуры наружного воздуха. Причем регулятор при определенном значении температуры наружного воздуха и дальнейшем ее понижении поддерживает постоянное значение регулируемого параметра теплоносителя, исключая разрегулировку тепловых сетей, работающих по графику с верхней срезкой. Регулятором предусмотрена коррекция графика отпуска тепла при отклонениях температуры внутреннего воздуха от заданного значения.
Насосы циркуляционные, корректирующие.
Насосы в системе автоматики выполняют очень важную функцию:
- Поддерживают расчётную циркуляцию теплоносителя в системе отопления на время закрытия регулирующего клапана.
- Увеличивают скорость циркуляции теплоносителя в системе отопления, в случаях, когда теплоснабжающая организация не обеспечивает расчётные параметры теплоснабжения.
Способы регулирования тепловой нагрузки
Существует три основных способа регулирования тепловой нагрузки:
ü качественный – изменением температуры сетевой воды при постоянном её расходе;
ü количественный – изменением расхода сетевой воды при постоянной её температуре;
ü качественно-количественное – одновременное изменение температуры и расхода сетевой воды.
Для большинства источников тепловой энергии (а для некоторых и единственным) основным видом тепловой нагрузки является отопление. Доля других видов тепловой нагрузки, ГВС (средняя) и вентиляции в период отопительного сезона существенно ниже отопительной и, как правило, не превышает 30%. Поэтому, в основу центрального регулирования закладывается закон изменения отопительной нагрузки от температуры наружного воздуха – график качественного регулирования тепловой нагрузки по отоплению.
При наличии нагрузки ГВС в температурный график вводят ограничение минимального значения температуры воды в подающем трубопроводе для обеспечения необходимой температуры воды систем ГВС. Это ограничение называется «спрямление на ГВС». При включении подогревателей ГВС по последовательной схеме применяется график качественного регулирования по совмещённой нагрузке отопления и ГВС. В этом случае к значениям температур воды в подающем трубопроводе вводится надбавка, которая рассчитывается, исходя из соотношения нагрузки ГВС и отопления. Но такие системы теплоснабжения встречаются не часто.
Случаев применения количественного или качественно-количественного регулирования для теплоснабжения городов автору не известно.
Таблица с температурным графиком
Режим работы котлов зависит от погоды окружающей среды.
Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.
В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:
Температура наружного воздуха | Температура сетевой воды в подающем трубопроводе | Температура сетевой воды в обратном трубопроводе |
+10 | 70 | 55 |
+9 | 70 | 54 |
+8 | 70 | 53 |
+7 | 70 | 52 |
+6 | 70 | 51 |
+5 | 70 | 50 |
+4 | 70 | 49 |
+3 | 70 | 48 |
+2 | 70 | 47 |
+1 | 70 | 46 |
70 | 45 | |
-1 | 72 | 46 |
-2 | 74 | 47 |
-3 | 76 | 48 |
-4 | 79 | 49 |
-5 | 81 | 50 |
-6 | 84 | 51 |
-7 | 86 | 52 |
-8 | 89 | 53 |
-9 | 91 | 54 |
-10 | 93 | 55 |
-11 | 96 | 56 |
-12 | 98 | 57 |
-13 | 100 | 58 |
-14 | 103 | 59 |
-15 | 105 | 60 |
-16 | 107 | 61 |
-17 | 110 | 62 |
-18 | 112 | 63 |
-19 | 114 | 64 |
-20 | 116 | 65 |
-21 | 119 | 66 |
-22 | 121 | 66 |
-23 | 123 | 67 |
-24 | 126 | 68 |
-25 | 128 | 69 |
-26 | 130 | 70 |
Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.
Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.
Ссылка на скачивание графика
Расчёт температурного графика качественного регулирования
Формулы расчёта температурного графика выводятся из совместного решения трёх уравнений теплопередачи.
Первое уравнение. Тепловой поток на компенсацию тепловых потерь зданием (теплопотери через ограждающие конструкции здания)
Q = (tвн – tн) ∙ ∑(ki ∙ Fi)зд, (1)
где tвн – температура воздуха в отапливаемом здании, °С; tн – температура наружного воздуха, °С; ∑(ki ∙ Fi)зд – сумма произведений коэффициентов теплопередачи отдельных ограждающих конструкций здания на их поверхности.
В безразмерном виде первое уравнение можно представить, как:
(2)
или
, (3)
где – относительная разность температур внутреннего и наружного воздуха.
Надстрочные индексы «р» здесь и далее обозначают значение при расчётной температуре наружного воздуха.
Второе уравнение. Тепловой поток, выделяемый нагревательными приборами
, (4)
где t3 – температура теплоносителя на входе в отопительный прибор, °С; t2 – то же на выходе, °С; ∑(ki ∙ Fi)пр – сумма произведений коэффициентов теплопередачи отдельных нагревательных приборов на их поверхности.
Коэффициент теплопередачи нагревательного прибора не является постоянной величиной и зависит от температурного напора отопительного прибора ∆t:
, (5)
, (6)
где А – постоянная, зависящая от типа прибора, места, способа установки и ряда других факторов; n – постоянная, также зависящая от типа нагревательного прибора. Для систем отопления, оборудованных наиболее распространёнными типами конвективно-излучающих нагревательных приборов, n = 0,25;
Комплекс ∑(ki ∙ Fi)пр также можно выразить через расчётные значения тепловой нагрузки и температурного напора:
, (7)
где ∆tр температурный напор отопительного прибора при расчётном режиме (при расчётной температуре наружного воздуха):
. (8)
В безразмерном виде второе уравнение теплового потока будет выглядеть следующим образом:
(9)
или
. (10)
Третье уравнение. Тепловой поток, сообщаемый теплоносителем нагревательным приборам:
Q = c ∙ G ∙ (t1 – t2) (11)
или
Q = c ∙ G ∙ (1 – u) ∙ (t3 – t2), (12)
где с – теплоёмкость теплоносителя, Вт/(м3·°С); G – расход теплоносителя, м3;u – коэффициент смешения на тепловом узле; t1– температура теплоносителя до узла смешения, °С.
Коэффициент смешения рассчитывается по формуле:
. (13)
Расход теплоносителя G можно также выразить через расчетные значения тепловой нагрузки и разности температур теплоносителя:
(14)
или
, (15)
где g – относительный расход – параметр, характеризующий соответствие расхода теплоносителя при фактической температуре наружного воздуха расчётному значению. Для систем отопления с качественным регулированием значение параметра g = 1; – расчётный перепад температур тепловой сети: ; – расчётный перепад температур теплоносителя в нагревательных приборах: .
В безразмерном виде третье уравнение теплового потока будет выглядеть следующим образом:
(16)
или
. (17)
Таким образом три уравнения теплового потока образуют систему уравнений:
. (18)
При решении системы уравнений относительно температур теплоносителя t1, t2 и t3 получаются уравнения отопительного температурного графика качественного регулирования:
, (19)
, (20)
. (21)
Значения температур сетевой воды после смешения, t3ф, °С и обратной от систем отопления, t2ф, °С в диапазоне температур наружного воздуха, соответствующих спрямлению температурного графика на ГВС, а также «срезке» температурного графика:
, (22)
. (23)
Системы технического учета электрической энергии
Требования по оснащению объектов системами учета описаны в разделе 17.2 СП 31-110-2003 Проектирование и монтаж электроустановок жилых и общественных зданий.
Существует два вида учета электрической энергии: расчетный (коммерческий) и технический.
Расчетный – это учет отпущенной потребителям электроэнергии для денежного расчета за неё, осуществляется на «входе» электричества в объект (например, квартирный счетчик – квартира).
Технический – это учет для контроля расхода электроэнергии в зданиях, внутри предприятий и т.п. – определение параметров работы оборудования, проблемных участков и пр.
И для физических и для юридических лиц, коммерческий учёт электроэнергии ведётся при помощи однотарифных, двухтарифных и трехтарифных счётчиков.
Однотарифный – это счётчик, учитывающий расход электроэнергии по единому тарифу в течение суток.
Двухтарифный – это счётчик, который учитывает расход электроэнергии в дневное и ночное время по разным тарифам.
Трехтарифный – это счетчик, учитывающий расход в трех временных интервалах: Т1 (Пик) — время наибольшей нагрузки на сеть, 7-10 ч. утра и 17-21 ч. вечера; Т2 (Ночь) — время наименьшей нагрузки на сеть, с 23-7 утра; Т3 (Полупик) — средняя нагрузка на сеть, с 10-17 ч. вечера и 21-23 ч. вечера.
Основное предназначение системы учета – это рассчитать количество потребленной абонентом электроэнергии. Её основным элементом является аттестованный счетчик, установленный во вводном распределительном щите объекта, квартиры или дома. Если таких объектов много (многоквартирный дом, помещения арендаторов, коттеджный поселок и т.п.), то для автоматизированной передачи данных счетчики объединяются в общую шину (часто двухпроводную) передачи данных, и такая система будет называться АСКУЭ – автоматизированная система коммерческого учета электроэнергии.
АСТУЭ предназначена для обеспечения эффективного учета электроэнергии, минимизации финансовых затрат при производстве, передаче, распределении и потреблении электроэнергии и мощности в целях оптимизации и прогнозирования энергопотребления. В состав системы входят токовые датчики, анализаторы качества и количества электрической энергии, а также SCADA – программный пакет, используемый для сбора, обработки и хранения информации. Как правило, система работает в составе системы управления зданием (BMS).
Возможности
Учёт воды без проводов с низкой стоимостью внедрения
Автоматический беспроводной сбор данных с неограниченного числа приборов учёта. Любое количество пользователей в проекте. Минимальная стоимость узла учёта при высокой надежности, так как не нужно ставить промежуточные концентраторы, накопители, устройства передачи данных. Всё оборудование можно установить своими силами. Разные варианты организации учёта: на основе водосчётчиков с встроенными радиомодулями или внешними, подключаемыми к импульсным выходам приборов учёта.
Показания и расход можно просматривать как в цифровом, так и графическом виде.
Почасовой профиль объемного расхода
Данные по объемному расходу воды, прошедшему через счётчик обновляются каждый час. Вы видите не статичные значения, например, показания на начало и конец месяца, а изменение параметров в динамике. Теперь вы можете узнать интервалы пиковых расходов в течении дня или недели и точные значения расхода.
Несмотря на внедрение современных стандартов экономного потребления воды, многие потребители и сегодня не ведут четкий учет. В некоторых квартирах нет счетчиков, некоторые владельцы несвоевременно или неточно передают данные приборов учета. В результате, обслуживающие организации не имеют достоверных данных, не могут планировать объемы потребления или оперативно ликвидировать потери. Исправить сложившуюся ситуацию помогает внедрение автоматизированных систем коммерческого учета воды (АСКУВ). Эти комплексы позволяют объединить разрозненных потребителей в общую сеть и в автоматическом режиме снимать показания, выполнять их обработку и анализ.
Установка такого оборудования выгодна и конечным пользователям ресурсов, и их поставщикам:
- Жильцы освобождаются от необходимости ежемесячно снимать показания, сверять их с обслуживающими организациями, а расчетные данные в выставленных счетах не вызывают сомнений.
- Обслуживающие организации и поставщики получают достоверные данные, экономят на ручном труде по сбору и обработке показаний, получают возможность всесторонне анализировать потребление воды, делать долгосрочные и краткосрочные прогнозы.
- У компаний-продавцов ресурсов появляется возможность снизить расходы на обработку данных от множества пользователей, решить проблемы несоответствия фактического и расчетного потребления.
Таким образом, автоматизация процессов учета и контроля в целом способствует их прозрачности, оперативности и достоверности.
План расчета
В качестве примера расчета температурного графика будут использованы показатели 130-70°C. Величины температур прямой и обратной сетевой жидкости-теплоносителя в расчетно-зимнем режиме составляют: 130°C и 70°С, температура жидкости на ГВС tг = 65°С.
Для построения диаграммы температур прямой и обратной сетевой воды-теплоносителя принято рассматривать значения следующих характерных схем: расчетно-зимняя система, система при значениях температуры обратной воды-теплоносителя равной 65°С, система при расчетной температуре наружного воздуха на вентиляцию, схема в точке излома температурного графика, а также режим при значении температуры окружающей среды, которая равна 8°С.
Для расчета Т1 и Т2 используем следующие формулы:
- Т1 = tвн + Δtр x Õˆ0,8 + ( δtр – 0,5 x υр ) x Õ;
- Т2 = tвн + Δtр x Õˆ0,8 — 0,5 x υр x Õ.
Значение данных, используемых в формулах выше:
- tвн – значение расчетной температуры воздуха в помещении, tвн = 20 ˚С;
- Õ – относительная отопительная нагрузка;
- Õ = tвн – tн/ tвн – t р.о;
- tн – значение температуры воздуха окружающей среды;
- Δtр — расчетно–температурный напор при передаче тепла от отопительных приборов (Δtр = (95+70)/2 – 20 = 62,5 ˚С);
- δtр – разность температур прямой и обратной воды-теплоносителя в расчетно–зимнем режиме (δtр = 130 — 70 = 60 °С);
- υр – разность температур жидкости в отопительном приборе на входе и выходе в расчетно – зимнем режиме (υр = 95 – 70 = 25 °С).
План расчета:
- Рассматриваются известные данные для расчетно-зимней схемы. В нашем случае — это tро = -43 °С, T1 = 130 °С, T2 = 70 °С;
- Значение величин при температуре обратной воды-теплоносителя равно 65°С. Подставляем известные величины в вышеуказанные формулы и делаем следующие вычисления:
Т1 = 20 + 62,5 x Õˆ0,8 + (60 – 0,5 x 25) x Õ = 20 + 62,5 x Õˆ0,8 + 47,5 x Õ,
T2 = 20 + 62,5 x Õˆ0,8 – 12,5 x Õ; - Величина температуры в обратке Т2 для этого режима равна 65°С. Отсюда: 65 = 20 + 62,5 x Õˆ0,8 – 12,5 x Õ, методом последовательных приближений определяем Õ. Õ = 0,869. Тогда Т1 = 65 + 60 х 0,869 = 117,14 °С;
- Значение температуры воздуха окружающей среды в этом случае будет равно: tн = tвн — Õ х (tвн – tро) = 20 – 0,869 х (20- (-43)) = — 34, 75 °С;
- Схема, когда tн = tрвент = -30 °С:
Õот = (20- (-30))/(20- (-43)) = 50/63 = 0,794
Т1 = 20 + 62,5 x 0,794 ˆ0,8 + 47,05 х 0,794 = 109,67°С
T2 = Т1 – 60 х Õ = 109,67 – 60 х 0,794 = 62,03°С; - Схема, когда Т1 = 65 °С (излом температурной диаграммы):
65 = 20 + 62,5 x Õˆ0,8 + 47,5 x Õ, методом последовательных приближений определяем Õ. Õ = 0,3628.
Т2 = 65 – 60 х 0,3628 = 43,23°С
В этом случае температура наружного воздуха tн = 20 – 0,3628 х (20- (-43)) = -2,86°С; - Схема, когда tн = 8 °С
Õот = (20-8)/(20- (-43)) = 0,1905. С учетом срезки температурного графика на горячее водоснабжение принимаем Т1 = 65 °С. Температуру Т2 в обратном трубопроводе в диапазоне от +8 °С до точки излома графика рассчитываем по формуле: t2 = t1 – (t1 – tн)/(t1’ — tн) x (t1’ — t2’),
где t1’ , t2’ — температуры прямой и обратной воды-теплоносителя без учета срезки на ГВС.
T2 = 65 – (65 – 8)/(45,64 – х (45,63 – 34,21) = 47,7°С.
На этом расчет температурного графика для характерных режимов считается законченным. Остальные температуры прямой и обратной воды-теплоносителя для диапазона температур наружного воздуха рассчитываются по аналогичной системе.
Результаты работыБалансировка системы ГВС
Ниже приведены данные по расходу горячей воды в нашем доме. Взят период “до” установки балансировочных клапанов на стояках и период “после”.
Табл. 2 — Сопоставление расхода горячей воды “до” и “после” установки балансиров
Установка клапанов Danfoss MVT позволила отбалансировать систему, снизить циркуляцию горячей воды на первых четырех стояках и перераспределить давление на дальние стояки, где было больше жалоб на низкую температуру горячей воды.
Вследствие этого расход горячей воды заметно снизился, как видно из графиков.
Жители перестали сливать воду и искусственно создавать циркуляцию, следовательно стали меньше платить за потребленную горячую воду.
Рис. 3 — Сравнение потребления ГВС
76 485 ₽ На столько меньше мы заплатили за горячую воду после установки балансиров за период июнь 2020 — май 2021
Экономия от замены прибора учета
Ниже в таблице приведен расчет потребления тепловой энергии до замены узла учета и после.
Табл. 3 — Сопоставление потребления тепловой энергии до замены узла учета и после
Произведя расчет общей величины экономии тепловой энергии, достигнутой ЖСК с учетом факторов (сопоставимых условий), влияющих на объем потребления тепловой энергии, мы получили значение в 101 Гкал.
Подробный расчет представлен в Приложении №4.
Рис. 4 — Сравнение потребления отопления
250 тысяч ₽ составила экономия от замены узла учета за отопительный сезон 2020-2021
Характеристики автоматических систем управления отопительной системой
На данный момент на рынке представлена широкая номенклатура отопительной автоматики. Несмотря на отличия в конструкции, функционале и параметрах, ко всей автоматике предъявляются одни и те же требования, выполнение которых является обязательным.
Первым и самым важным требованием является надежная и эффективная обратная связь, которая достигается за счет наличия высокочувствительных термодатчиков. При работе автоматики минимальные перепады температуры все же будут появляться, и задача датчиков – не допустить заметного перепада.
Кроме того, важным параметром при выборе автоматики для отопления является понятный и приятный интерфейс, который позволит осуществлять регулировку без каких-либо усилий и знаний (подробнее: «
Регулировка системы отопления — подробности из практики
«). За такую простоту придется заплатить, поскольку даже самая простая управляющая панель скрывает под собой сложный контроллер для системы отопления. Надежность этих устройств очень высока, но и стоимость соответствует высокому качеству.
Все устройства должны быть безопасными и надежными – это обязательное условие. Монтаж таких систем обычно выполняется квалифицированными специалистами, но есть и такие модели, которые можно установить самостоятельно.