Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности
Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше
Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материалов
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Теплопроводность накипи
Коэффициент теплопроводности силикатной накипи, гипсовой накипи, карбонатной накипи при комнатной температуре. Как видно по данным таблицы, теплопроводность накипи имеет низкие значения, что может негативно и даже катастрофически повлиять на процессы теплообмена через разделительные стенки в жидкостных теплообменниках без необходимого технического обслуживания.
- Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
- Х. Уонг. Основные формулы и данные по теплообмену для инженеров. Справочник. М.: Атомиздат. 1979 — 212 с.
- Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
- Франчук А. У. Таблицы теплотехнических показателей строительных материалов, М.: НИИ строительной физики, 1969 — 142 с.
Прочность или теплоизоляция?
Конечно, есть определенные условия, при которых теплопроводность бетонной смеси будет или уменьшаться, или возрастать
В первую очередь придется обращать внимание на толщину заливаемой смеси. Чем этот показатель больше, тем ниже теплопроводность. Но при этом увеличивается расход самого материала, что влияет на себестоимость производимых работ
Но при этом увеличивается расход самого материала, что влияет на себестоимость производимых работ.
Вот почему, решая сразу две задачи: увеличение теплоизоляционных характеристик конструкции и снижение ее себестоимости, в первую очередь необходимо соблюсти точное соотношение прочности и количества раствора.
В некоторых случаях идут на то, чтобы увеличить прочность, то есть использовать тяжелые бетоны, но при этом снизить теплоизоляционные свойства. Или наоборот. В любом случае основное требование – это прочность, а затем уже теплоизоляционные качества и другие характеристики.
Метод измерения теплопроводности
Для точного измерения теплопроводности бетона разработан специальный метод, зафиксированный в государственном стандарте №7076. Отбор образцов регламентируется требованиями ГОСТ 10180.
Данные вопросы требуют более подробного рассмотрения:
- Отбор образцов. Требования стандарта 10180 распространяются на бетоны всех видов, используемые в той или иной области строительства. Стандартом устанавливаются методы, позволяющие определить предел прочности бетона на сжатие, растяжение или устойчивость к раскалыванию. ГОСТ 10180 определяет и порядок отбора образцов: форму, размеры и число. Форма отливки должна плоской, а длинна ребра — 15 см. Количество подобных образцов регламентируется стандартом на тот или иной тип строительной смеси. Если этот момент в стандарте не освещен, то в соответствии с ГОСТ 7076 на испытания отправляют 5 образцов, взятых по ГОСТ 10180.
- Проведение испытаний. Измерение теплопроводности производится на плоских образцах, большая грань которых превышает меньшую в 5 раз. Тепловой поток, направляется сквозь широкую грань образца, после чего специальный прибор измеряет эффективную теплопроводность и термическое сопротивление.
Дом, улавливающий тепло
Правильно спланированный и сориентированный дом частично способен сам аккумулировать солнечное тепло и обеспечивать комфортное проживание при соблюдении условий:
- Ограничение количества или уменьшение размеров окон, выходящих на север;
- Дом следует располагать с востока на запад;
- Нужно посадить деревья хвойных пород со стороны преобладания зимних ветров;
- Фасад с юга сделать более открытым, там стоит расположить самые оживлённые и посещаемые помещения;
- Лиственные деревья на участке не должны закрывать зимнее солнце;
- С южной стороны желательно устроить навес от летнего жаркого солнца.
Бетоны
Изделия из бетона с добавлением цемента служат основой при строительстве домов. Опишем в таблице их теплопроводность:
№ | Материал | ρ0, кг/м³ | λ0, Вт/(м·°С) | λ (А), Вт/(м·°С) | λ (Б), Вт/(м·°С) | μ, мг/(м·ч·Па) |
---|---|---|---|---|---|---|
1 | Туфобетон | 1800 | 0,64 | 0,87 | 0,99 | 0,09 |
2 | То же | 1600 | 0,52 | 0,7 | 0,81 | 0,11 |
3 | 1400 | 0,41 | 0,52 | 0,58 | 0,11 | |
4 | 1200 | 0,32 | 0,41 | 0,47 | 0,12 | |
5 | Бетон на литоидной пемзе | 1600 | 0,52 | 0,62 | 0,68 | 0,075 |
6 | То же | 1400 | 0,42 | 0,49 | 0,54 | 0,083 |
7 | 1200 | 0,30 | 0,4 | 0,43 | 0,098 | |
8 | 1000 | 0,22 | 0,3 | 0,34 | 0,11 | |
9 | 800 | 0,19 | 0,22 | 0,26 | 0,12 | |
10 | Бетон на вулканическом шлаке | 1600 | 0,52 | 0,64 | 0,7 | 0,075 |
11 | То же | 1400 | 0,41 | 0,52 | 0,58 | 0,083 |
12 | 1200 | 0,33 | 0,41 | 0,47 | 0,09 | |
13 | 1000 | 0,24 | 0,29 | 0,35 | 0,098 | |
14 | 800 | 0,20 | 0,23 | 0,29 | 0,11 | |
Бетоны на искусственных пористых заполнителях | ||||||
1 | Керамзитобетон на керамзитовом песке | 1800 | 0,66 | 0,80 | 0,92 | 0,09 |
2 | То же | 1600 | 0,58 | 0,67 | 0,79 | 0,09 |
3 | 1400 | 0,47 | 0,56 | 0,65 | 0,098 | |
4 | 1200 | 0,36 | 0,44 | 0,52 | 0,11 | |
5 | 1000 | 0,27 | 0,33 | 0,41 | 0,14 | |
6 | 800 | 0,21 | 0,24 | 0,31 | 0,19 | |
7 | 600 | 0,16 | 0,2 | 0,26 | 0,26 | |
8 | 500 | 0,14 | 0,17 | 0,23 | 0,3 | |
9 | Керамзитобетон на кварцевом песке с умеренной (до 12 %) поризацией | 1200 | 0,41 | 0,52 | 0,58 | 0,075 |
10 | То же | 1000 | 0,33 | 0,41 | 0,47 | 0,075 |
11 | 800 | 0,23 | 0,29 | 0,35 | 0,075 | |
12 | Керамзитобетон на перлитовом песке | 1000 | 0,28 | 0,35 | 0,41 | 0,15 |
13 | То же | 800 | 0,22 | 0,29 | 0,35 | 0,17 |
14 | Керамзитобетон беспесчаный | 700 | 0,135 | 0,145 | 0,155 | 0,145 |
15 | То же | 600 | 0,130 | 0,140 | 0,150 | 0,155 |
16 | 500 | 0,120 | 0,130 | 0,140 | 0,165 | |
17 | 400 | 0,105 | 0,115 | 0,125 | 0,175 | |
18 | 300 | 0,095 | 0,105 | 0,110 | 0,195 | |
19 | Шунгизитобетон | 1400 | 0,49 | 0,56 | 0,64 | 0,098 |
20 | То же | 1200 | 0,36 | 0,44 | 0,5 | 0,11 |
21 | 1000 | 0,27 | 0,33 | 0,38 | 0,14 | |
22 | Перлитобетон | 1200 | 0,29 | 0,44 | 0,5 | 0,15 |
23 | То же | 1000 | 0,22 | 0,33 | 0,38 | 0,19 |
24 | 800 | 0,16 | 0,27 | 0,33 | 0,26 | |
25 | Перлитобетон | 600 | 0,12 | 0,19 | 0,23 | 0,3 |
26 | Бетон на шлакопемзовом щебне | 1800 | 0,52 | 0,63 | 0,76 | 0,075 |
27 | То же | 1600 | 0,41 | 0,52 | 0,63 | 0,09 |
28 | 1400 | 0,35 | 0,44 | 0,52 | 0,098 | |
29 | 1200 | 0,29 | 0,37 | 0,44 | 0,11 | |
30 | 1000 | 0,23 | 0,31 | 0,37 | 0,11 | |
31 | Бетон на остеклованном шлаковом гравии | 1800 | 0,46 | 0,56 | 0,67 | 0,08 |
32 | То же | 1600 | 0,37 | 0,46 | 0,55 | 0,085 |
33 | 1400 | 0,31 | 0,38 | 0,46 | 0,09 | |
34 | 1200 | 0,26 | 0,32 | 0,39 | 0,10 | |
35 | 1000 | 0,21 | 0,27 | 0,33 | 0,11 | |
36 | Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках | 1800 | 0,58 | 0,7 | 0,81 | 0,083 |
37 | То же | 1600 | 0,47 | 0,58 | 0,64 | 0,09 |
38 | 1400 | 0,41 | 0,52 | 0,58 | 0,098 | |
39 | 1200 | 0,36 | 0,49 | 0,52 | 0,11 | |
40 | Аглопоритобетон и бетоны на заполнителях из топливных шлаков | 1800 | 0,7 | 0,85 | 0,93 | 0,075 |
41 | То же | 1600 | 0,58 | 0,72 | 0,78 | 0,083 |
42 | 1400 | 0,47 | 0,59 | 0,65 | 0,09 | |
43 | 1200 | 0,35 | 0,48 | 0,54 | 0,11 | |
44 | 1000 | 0,29 | 0,38 | 0,44 | 0,14 | |
45 | Бетон на зольном обжиговом и безобжиговом гравии | 1400 | 0,47 | 0,52 | 0,58 | 0,09 |
46 | То же | 1200 | 0,35 | 0,41 | 0,47 | 0,11 |
47 | 1000 | 0,24 | 0,3 | 0,35 | 0,12 | |
48 | Вермикулитобетон | 800 | 0,21 | 0,23 | 0,26 | — |
49 | То же | 600 | 0,14 | 0,16 | 0,17 | 0,15 |
50 | 400 | 0,09 | 0,11 | 0,13 | 0,19 | |
51 | 300 | 0,08 | 0,09 | 0,11 | 0,23 | |
Бетоны особо легкие на пористых заполнителях и ячеистые | ||||||
1 | Полистиролбетон на портландцементе (ГОСТ Р 51263) | 600 | 0,145 | 0,175 | 0,20 | 0,068 |
2 | То же | 500 | 0,125 | 0,14 | 0,16 | 0,075 |
3 | 400 | 0,105 | 0,12 | 0,135 | 0,085 | |
4 | 350 | 0,095 | 0,11 | 0,12 | 0,09 | |
5 | 300 | 0,085 | 0,09 | 0,11 | 0,10 | |
6 | 250 | 0,075 | 0,085 | 0,09 | 0,11 | |
7 | 200 | 0,065 | 0,07 | 0,08 | 0,12 | |
8 | 150 | 0,055 | 0,057 | 0,06 | 0,135 | |
9 | Полистиролбетон модифицированный на шлакопортландцементе | 500 | 0,12 | 0,13 | 0,14 | 0,075 |
10 | То же | 400 | 0,09 | 0,10 | 0,11 | 0,08 |
11 | 300 | 0,08 | 0,08 | 0,09 | 0,10 | |
12 | 250 | 0,07 | 0,07 | 0,08 | 0,11 | |
13 | 200 | 0,06 | 0,06 | 0,07 | 0,12 | |
14 | Газо- и пенобетон на цементном вяжущем | 1000 | 0,29 | 0,38 | 0,43 | 0,11 |
15 | То же | 800 | 0,21 | 0,33 | 0,37 | 0,14 |
16 | 600 | 0,14 | 0,22 | 0,26 | 0,17 | |
17 | 400 | 0,11 | 0,14 | 0,15 | 0,23 | |
18 | Газо- и пенобетон на известняковом вяжущем | 1000 | 0,31 | 0,48 | 0,55 | 0,13 |
19 | То же | 800 | 0,23 | 0,39 | 0,45 | 0,16 |
20 | 600 | 0,15 | 0,28 | 0,34 | 0,18 | |
21 | 500 | 0,13 | 0,22 | 0,28 | 0,235 | |
22 | Газо- и пенозолобетон на цементном вяжущем | 1200 | 0,37 | 0,60 | 0,66 | 0,085 |
23 | То же | 1000 | 0,32 | 0,52 | 0,58 | 0,098 |
24 | 800 | 0,23 | 0,41 | 0,47 | 0,12 |
Потребность в теплоизоляции стен
Обоснованность применения теплоизоляции состоит в следующем:
- Сбережение тепла в помещениях в холодный период и прохлады в жару. В многоэтажном жилом доме теплопотери через стены могут достигать до 30 % или 40 %. Чтобы снизить потери тепла понадобятся особые теплоизолирующие материалы. В зимний период использование электрических обогревателей воздуха может способствовать увеличению расходов на оплату электроэнергии. Этот убыток гораздо более выгодно компенсировать за счет применения теплоизоляционного материала высокого качества, который поможет обеспечить комфортный микроклимат в помещении в любой сезон. Стоит заметить, что грамотное утепление сведет к минимуму и затраты на использование кондиционеров.
- Продление срока эксплуатации несущих конструкций здания. В случае с промышленными строениями, которые возводятся с использованием металлического каркаса, теплоизолятор выступает надежной защитой поверхности металла от процессов коррозии, которая может очень пагубно отразиться на конструкциях данного типа. Что касается срока службы кирпичных зданий, он определяется числом циклов заморозки-разморозки материала. Влияние этих циклов тоже нивелирует утеплитель, поскольку в теплоизолированном здании точка росы сдвигается в сторону утеплителя, оберегая стены от разрушения.
- Изоляция от шума. Защитой от все увеличивающегося шумового загрязнения служат материалы со свойствами шумопоглощения. Это могут быть толстые маты или стеновые панели, способные отражать звук.
- Сохранение полезной площади помещений. Применение теплоизолирующих систем позволит снизить уровень толщины наружных стен, а внутренняя площадь зданий при этом увеличится.
Теплопроводность воздуха
Воздух представляет собой смесь газов в различных пропорциях, каждый из которых обладает собственными теплофизическими характеристиками. Для удобства в расчётах вместо воздуха как смеси используют его модель как однородного газа. Основные газообразные компоненты воздуха:
- кислород — 20,95% по объёму и 23,20% по весу;
- азот — 78,09% и 75,47%, соответственно;
- углекислый газ — 0,03% и 0,046%;
- водород, аргон, криптон и другие газы в ничтожных количествах.
Изменение теплопроводности смеси атмосферных газов — сложный процесс, зависящий от многих физических явлений, например, от влажности. Поэтому коэффициент теплопроводности воздуха при различных температурах — не расчётная величина, а усреднённый результат многочисленных экспериментов. Следует отметить, что для атмосферных колебаний давления изменениями λ можно пренебречь. Таблица коэффициентов теплопроводности воздуха в зависимости от значений температуры выглядит так:
Температура, K | λ, Вт/(м·град) | Т | λ | Т | λ | Т | λ |
90 | 0,0084 | 230 | 0,0204 | 370 | 0,0315 | 600 | 0,0469 |
100 | 0,0093 | 240 | 0,0212 | 380 | 0,0323 | 650 | 0,0497 |
110 | 0,0102 | 250 | 0,0221 | 390 | 0,0330 | 700 | 0,0524 |
120 | 0,0111 | 260 | 0,0229 | 400 | 0,0338 | 750 | 0,0549 |
130 | 0,0120 | 270 | 0,0238 | 420 | 0,0352 | 800 | 0,0573 |
140 | 0,0129 | 280 | 0,0246 | 440 | 0,0366 | 850 | 0,0596 |
150 | 0,0138 | 290 | 0,0254 | 460 | 0,0380 | 900 | 0,0620 |
160 | 0,0147 | 300 | 0,0262 | 480 | 0,0394 | 950 | 0,0643 |
170 | 0,0155 | 310 | 0,0269 | 500 | 0,0407 | 1000 | 0,0667 |
180 | 0,0164 | 320 | 0,0277 | 520 | 0,0420 | 1050 | 0,0691 |
190 | 0,0172 | 330 | 0,0285 | 540 | 0,0433 | 1100 | 0,0715 |
200 | 0,0180 | 340 | 0,0292 | 560 | 0,0445 | 1150 | 0,0739 |
210 | 0,0188 | 350 | 0,0300 | 580 | 0,0457 | 1200 | 0,0763 |
220 | 0,0196 | 360 | 0,0308 |
Эти данные точны для сухого газообразного воздуха в состоянии покоя при атмосферном давлении 1 бар при идеальных пропорциях составляющих его газов. На практике отклонения от табличных значений могут быть вызваны самыми разнообразными факторами.
Например, наличие промышленных производств, выбрасывающих в атмосферу огромное количество химических и биологических микрочастиц (альдегиды, аммиак, оксиды, тяжёлые металлы), приводит к значительным загрязнениям атмосферы, а подобные примеси в больших количествах способны не только локально изменить теплопроводность воздуха, но и повлиять на глобальный теплообмен
Теплотехнический расчет стен из различных материалов
Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.
Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа
Второе становится особенно актуальным при отсутствии подведенного к дому газа
Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.
Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).
По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.
Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.
В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.
Расчет необходимой толщины однослойной стены
В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.
Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).
Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).
№ п/п | Материал стены | Теплопроводность, Вт/м·°C | Толщина стены, мм | |
Требуемая | Допустимая | |||
1 | Газобетонный блок | 0,14 | 444 | 270 |
2 | Керамзитобетонный блок | 0,55 | 1745 | 1062 |
3 | Керамический блок | 0,16 | 508 | 309 |
4 | Керамический блок (тёплый) | 0,12 | 381 | 232 |
5 | Кирпич (силикатный) | 0,70 | 2221 | 1352 |
Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.
Расчет сопротивления теплопередачи стены
Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям
Стена из газобетонного блока
1 | Газобетонный блок D600 (400 мм) | 2,89 Вт/м·°C |
2 | Газобетонный блок D600 (300 мм) + утеплитель (100 мм) | 4,59 Вт/м·°C |
3 | Газобетонный блок D600 (400 мм) + утеплитель (100 мм) | 5,26 Вт/м·°C |
4 | Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 2,20 Вт/м·°C |
5 | Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 2,88 Вт/м·°C |
Стена из керамзитобетонного блока
1 | Керамзитобетонный блок (400 мм) + утеплитель (100 мм) | 3,24 Вт/м·°C |
2 | Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 1,38 Вт/м·°C |
3 | Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 3,21 Вт/м·°C |
Стена из керамического блока
1 | Керамический блок (510 мм) | 3,20 Вт/м·°C |
2 | Керамический блок тёплый (380 мм) | 3,18 Вт/м·°C |
3 | Керамический блок (510 мм) + утеплитель (100 мм) | 4,81 Вт/м·°C |
4 | Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 2,62 Вт/м·°C |
Стена из силикатного кирпича
1 | Кирпич (380 мм) + утеплитель (100 мм) | 3,07 Вт/м·°C |
2 | Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 1,38 Вт/м·°C |
3 | Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 3,05 Вт/м·°C |
Определение
Теплопроводностью материала называют перенос внутренней энергии от более нагретых частей к менее нагретым. Механизм переноса тепла отличается в зависимости от агрегатного состояния вещества, а также распределения температур по поверхности материала. Иными словами, способность тела проводить тепло — и есть теплопроводность. Определяется она количеством теплоты, которое способно проходить через определенную толщину материала, на определенном участке за обозначенное время (естественно, для удобства расчетов все показатели равны единице). Но штукатурки отличаются слоем нанесения — значит и показатель будет другим
Как правильно выбрать утеплитель?
При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием
Основные требования, предъявляемые к теплоизоляционным материалам:
Теплопроводность.
Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.
Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности. Под плотностью понимают массу одного кубического метра теплоизоляционного материала
По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи
Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.
Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и подходят для утепления вертикальных конструкций внутри помещений.
А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.
А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.
Толщину утеплителя необходимо определять на основании теплотехнического расчета с учетом климатических особенностей территории, материала стены и её минимально допустимого значения сопротивления теплопередачи.
В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающих конструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными
Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание
Виды утеплителей
Из утеплителей меньшей теплопроводностью обладают пенополистирол и экструдированный пенополиуретан. Это жесткие, хрупкие материалы, выпускающиеся в плитах, и имеющие ячеистую структуру. Но нужно учесть, что при увеличении плотности структуры материала, увеличивается и его способность пропускать тепло.
Минеральные утеплители кроме хорошей сохранности тепла, обладают отличными звукоизоляционными свойствами: они гасят звуки, не позволяя им проникнуть в помещение.
Производится минвата в виде плит или в рулонах. Плитами обкладываются стены, кровля, пол. Рулонный утеплитель пригоден для укрытия труб водоснабжения и отопления.
- Таблица теплопроводности утеплителей
- Утеплитель Басвул
- Керамический кирпич — Теплопроводность